Индукционные светильники или светодиодные? Промышленный объект. Современные индукционные лампы Системы индукционного освещения

Сегодня потребители все чаще выбирают энергоэффективные бытовые и промышленные осветительные устройства. Однако помимо экономии важную роль играет и качество подсветки. Достойной альтернативой традиционным источникам освещения являются индукционные лампы.

Они излучают приятный для глаз мягкий свет, не меняющий объективное восприятие предметов. Давайте вместе разберемся в устройстве и принципах работы индукционных ламп.

Первичным источником света в индукционной лампочке служит плазма, искусственно созданная в результате ионизации газовой смеси ВЧ электромагнитным полем.

Ток порождает переменное электрическое поле, обуславливая возникновение газового разряда в стеклянной колбе. Возбужденная ртуть генерирует УФ-излучение, которое благодаря люминофору конвертируется в видимый свет.

Конструкция индукционной лампы включает три базовые функциональные элементы:

  • газоразрядную трубку;
  • индукционную катушку с ферритовым кольцом;
  • электронный балласт.

Внутри трубки находятся капли амальгамы ртути. Сама колба заполнена газом с низкой химической реактивностью – аргоном/криптоном, а ее внутренняя поверхность покрыта неорганическим люминофором.

Индукционная катушка и электромагнит формируют высокочастотное магнитное поле, под воздействием которого свободные электроны ускоряются, сталкиваются и возбуждают атомы ртути.

В результате образуется ультрафиолетовое излучение. Люминофором оно трансформируется в видимое яркое свечение.

Как и в простых флуоресцентных лампочках, сочетание разных люминофоров в покрытии колбы ИЛ дает свечение различных цветов. Чаще всего встречаются устройства с колориметрической температурой 3500 К, 4100 К, 5000 К, 6500 К

Электронный балласт подключается к источнику постоянного напряжения 12 В/24 В или же к сети синусоидального напряжения 120 В/220 В/380 В.

Система управления пускателем трансформирует переменный ток 50 Гц в постоянный, а потом – в ток высокой частоты от 190 кГц до 2,65 МГц.

Этот ВЧ ток и создает магнитное поле. Кроме того, пускатель генерирует стартовый сильный импульс, который зажигает индукционный источник света.

Чтобы обеспечить стабильную работу безэлектродного осветительного устройства, система управления также может изменять силу электрического тока и его частоту через катушку индуктора.

С целью уменьшить рассеяние высокочастотного электромагнитного поля лампы оснащают ферритовыми экранами и/или специальными сердечниками.

Основное отличие индукционных энергосберегающих ламп от других источников света – отсутствие нитей накала и контактных термокатодов. В индукционных светильниках электромагниты расположены снаружи, то есть прямого контакта электродов с ионизированной газовой средой нет

Это делает баллон осветительного устройства более однородным и примерно одинаково нагруженным по температуре.

При продолжительной работе такого освещения растрескивание стеклянной колбы не наблюдается, со временем материал электрода не осаждается на стенках.

Отсутствие электродов накаливания, необходимых для зажигания обычных лампочек, позволяет достичь невероятно длительного срока эксплуатации индукционных светильников – до 120000 часов работы.

Кроме того, ресурс работы индукционных источников света примерно в 2-3 раза превышает срок эксплуатации светодиодов.

Разновидности индукционных ламп

Впервые лампу без контактных электродов продемонстрировал Никола Тесла в далеком 1893 году на Всемирной выставке в Чикаго. Презентованный публике осветительный прибор питался от магнитного поля катушки Тесла. А первый надежный прототип индукционного источника света создал Джон Мелвин Андерсон в 1967 году.

Классификация безэлектродных лампочек

В 1994 году компанией General Electric была представлена компактная энергосберегающая лампа GENURA со встроенным высокочастотным генератором в цоколе.

Серийный выпуск индукционных люминесцентных ламп стартовал в 1990-х годах.

Сегодня лидером в производстве безэлектродных энергоэффективных осветительных устройств являются корпорации PHILIPS Lighting, GE Lighting и OSRAM Licht AGO. В таблице указаны параметры и стоимость разных моделей ламп этих производителей

В зависимости от типа конструкции, индукционные источники света бывают:

  • со встроенным балластом – электрический генератор и лампа совмещены в одном блоке;
  • с отдельным электронным пускателем – наружный генератор и лампа являются разнесенными приборами.

В зависимости от способа размещения катушки эти лампы также делят на устройства с внешним (низкочастотные) и внутренним (высокочастотные) индуктором.

В первом случае катушка с ферромагнитным стержнем обвита вокруг баллона. Рабочая частота лампочек с внешней индукцией лежит в диапазоне 190-250 кГц.

Они имеют лучшие условия для интенсивного теплообмена с окружающей средой, поскольку катушка снаружи герметичной колбы легко рассеивает выделяемое устройством тепло. Срок службы низкочастотных приборов – до 120000 часов.

Во втором случае индукционная катушка с намотанным сердечником расположена внутри стеклянной колбы. Выделяемое тепло оказывается в полости осветительного устройства, поэтому и нагреваются лампы с внутренней индукцией сильнее.

Их рабочая частота находится в интервале 2-3 МГц. Ресурс таких источников света не превышает 75000 часов.

По внешнему виду приборы с внутренним индуктором напоминают вакуумные лампочки. А вот модели с внешним индуктором имеют форму кольца или прямоугольника

Как высокочастотные, так и низкочастотные лампы имеют большой запас прочности и отличаются длительным сроком службы.

Варианты исполнения и маркировка

В настоящее время компаниями, которые специализируются на освещении, налажено серийное производство индукционных лампочек разных форм. Конструктивные особенности и варианты исполнения прослеживаются в их маркировке.

Первые два азбучных знака в шифре определяют вид устройства (ИЛ – индукционная лампа), третий указывает на форму. После буквенного обозначения обычно объявляют мощность.

ИЛК – индукционные лампочки круглой формы. Обладают высокими показателями световой отдачи и большим диапазоном спектрофотометрических температур. Подходят для установки в круглых и овальных светильниках.

Такие источники света активно используются для освещения складов, просторных производственных и ремонтных цехов, торговых комплексов, спортивных баз.

ИЛШ – лампы в форме шара. Выполнены в традиционной форме обычных вакуумных осветительных устройств большой мощности. Создают мягкий свет и зажигаются практически мгновенно.

Подходят для замены на энергоэффективные источники света без необходимости смены самого светильника.

ИЛШ устанавливают в прожекторах для освещения гостиниц и ресторанов, супермаркетов, а также в уличных и промышленных светильниках

ИЛУ – лампочки U-образной формы. Представляют собой приборы с отдельным генератором. Излучают яркий белый свет, при работе не мерцают.

Их задействуют для освещения стадионов, туннелей, метро и автомагистралей, рекламных стендов, вывесок и других объектов.

ИЛБ, ИЛБК – лампы с кольцеобразной формой колбы. В них генератор, катушка и трубка совмещены в едином блоке. Генерируют мягкий свет, который не ослепляет, быстро и легко зажигаются при температурах до -35 °C.

Подобные конструкции используют для подсветки отелей и торговых площадок, парковых зон и скверов, частных приусадебных территорий.

Отдельно стоит сказать об индукционных фитолампах для растений. Они отличаются формой стеклянной колбы и цветом излучения.

Разные модели индукционных фитоламп подходят для освещения зеленых насаждений в определенный период роста и развития. Серии таких изделий обозначают ТИЛ. Следующие две буквы указывают на конкретную модель лампы

Фитолампы индукционные ГП и ВГ предназначены для подсветки растений на стадии вегетативного роста. В них преобладает синий спектр излучения.

Устройства ФЛ используют на начальной фазе образования плодов, а также для ускорения формирования цветов. Они излучают красный свет.

Лампочки модели КЛ являются универсальными. Такие источники света дают возможность управлять ростом насаждений. Они генерируют насыщенный красный свет, необходимый для полноценного развития плодов растений и обильного цветения.

Примеры маркировки:

  • ИЛК-40 – круглая индукционная лампочка мощностью 40 Вт;
  • ТИЛПВГ-120 – прямоугольная фитолампа индукционная с мощностью в 120 Вт, модель ВГ для начального этапа вегетативного роста растений.

Излучение индукционной лампочки на 97% соответствует солнечному спектру, а потому отлично подходит для искусственного освещения тепличных комплексов.

Преимущества использования ИЛ

Безэлектродные лампы генерируют мягкий свет, комфортный для восприятия глазами. Оттенки цветов при этом не искажаются.

Яркость таких ламп можно изменять в пределах 30-100% с помощью простого для устройств с нитью накаливания.

Даже после 75000 часов работы индукционные приборы сохраняют уровень световой мощности на отметке 80-85% от первоначальной.

Обычные ЛЛ дневного света ближе к концу срока эксплуатации теряют до 55% яркости. На их колбах со временем образуются темные непрозрачные круги.

Преимущества использования индукционных безэлектродных ламп:

  • КПД 90%;
  • ресурс работы до 150 000 часов;
  • светоотдача больше 90-160 лм/Вт;
  • оптимальные условия для зрительного восприятия предметов;
  • диапазон рабочих температур в интервале от -35 °C до +50 °C;
  • коэффициент цветопередачи Ra˃80;
  • высокие показатели энергоэффективности;
  • минимальное нагревание колбы;
  • неограниченное количество циклов запуска/выключения;
  • отсутствие пульсации;
  • возможность регулировать интенсивность свечения;
  • гарантийный срок эксплуатации составляет 5 лет.

Производители заявляют, что индукционные источники света имеют лучшие технические характеристики, чем светодиоды и стоят в несколько раз дешевле. Энергопотребление у этих видов лампочек примерно одинаковое.

Применение безэлектродных ламп

Модернизованные осветительные приборы, не содержащие термокатодов и нити накала, используют как для внутреннего, так и для наружного освещения.

Сфера использования ИЛ

Безэлектродные лампы имеют встроенную защиту от КЗ (короткого замыкания) и скачков напряжения.

Индукционные светильники отличаются устойчивостью к вибрационным нагрузкам и случайным ударам, стабильно работают даже при пониженной температуре воздуха

Благодаря высоким показателям светоотдачи при небольшом потреблении электричества их используют в разных сферах:

  • для организации качественной подсветки улиц;
  • в торгово-развлекательных и гостиничных комплексах;
  • в офисных центрах и бытовых помещениях;
  • для освещения просторных цехов и складов на промышленных объектах;
  • для подсветки тепличных хозяйств и оранжерей;
  • для освещения автомагистралей и туннелей;
  • для организации взрывозащищенной подсветки на АЗС.

Благодаря стабильности параметров ртутные безэлектродные лампы используют в качестве прецизионно точечных источников УФ-излучения в спектрометрии.

Кроме этого, принцип индукционного возбуждения газа применяется в процессе перекачки энергии от внешних источников в рабочую среду лазеров.

Однако из-за наличия высокочастотного электромагнитного излучения индукционные светильники не устанавливают на железнодорожных станциях и в аэропортах.

Также эти лампочки способны вызывать помехи при одновременной работе со сверхчувствительным лабораторным и медицинским оборудованием. Поэтому в помещениях с подобной спецтехникой их не рекомендовано использовать.

Уличное и дорожное освещение

Наиболее эффективное дорожное освещение могут обеспечить уличные светильники с индукционными энергоэффективными лампами. Этот тип подсветки гарантирует комфортную видимость как для водителей, так и для пешеходов.

Дорожные светильники имеют прочное консольное крепление и монтируются на столбы, а также стандартные опоры. Их задействуют для освещения парковых зон и скверов, улиц и площадей, шоссе и автостоянок, набережных, дворов.

Мгновенный запуск ИЛ минимизирует потери электроэнергии и позволяет максимально эффективно использовать систему освещения. Это дает возможность организовать подсветку с задействованием датчиков движения

Как пример – мгновенный запуск освещения на автотранспортных магистралях в местах, где происходит движение машин и пешеходов.

Помимо этого, чувствительный датчик движения может быть совмещен с программируемым сумеречным выключателем.

Устройство настраивают под конкретные значения освещенности. При недостаточном уровне света датчик даст команду на включение ламп.

Возможность диммирования позволяет успешно применять интеллектуальные системы для эффективного управления уличной подсветкой.

За счет управления яркостью индукционных ламп с помощью регулятора мощности и астрономического таймера можно добиться реальной экономии электрической энергии, а также значительно сократить затраты на техобслуживание.

Внедрение интеллектуальных систем дает возможность контролировать состояние освещения, измерять и анализировать данные об энергопотреблении светильников.

Безопасные промышленные источники света

Использование устройств на базе индукционной технологии – экономически выгодное решение для модернизации систем освещения промышленных предприятий.

Индукционные светильники отличаются высоким качеством сборки и не нуждаются в регулярном обслуживании. Они существенно снижают потребление электричества и помогают повысить рентабельность производства.

Промышленные осветительные приборы имеют класс защиты IP54, что позволяет эксплуатацию даже в условиях загрязнения и повышенной влажности. Их можно устанавливать в неотапливаемых и плохо вентилируемых помещениях.

Закаленное стекло в сочетании с силиконовой изоляцией надежно защищает корпус от попадания внутрь инородных примесей и воды.

Существуют также промышленные взрывозащищенные модели ИЛ. Они не только обеспечивают качественное освещение, но и предотвращают возникновение пожароопасных ситуаций. Такие приборы повышают уровень безопасности на производстве

На корпус индукционных взрывозащищенных светильников наносят антистатическое полимерное покрытие.

Благодаря этому составу осветительные устройства характеризуются ударопрочностью и устойчивостью к воздействию минусовых температур.

Специальное искробезопасное покрытие не разрушается даже в щелочной и кислотной среде и способно сохранять свои свойства в течение 30 лет.

Подсветка в теплицах и оранжереях

Спектр индукционной лампы на 75% соответствует фотосинтетически активной радиации, необходимой для активного роста и длительного цветения растений.

Именно поэтому лампочки безэлектродного типа задействуют в качестве дополнительных источников в оранжереях и теплицах, для освещения стандартных и компактных гроу-боксов, прямой, боковой и междурядной досветки растений.

Рабочая температура индукционных осветительных приборов не превышает 60 градусов по шкале Цельсия, что позволяет располагать их близко к зеленым насаждениям

Использование таких ламп в гроу-боксах дает возможность значительно сократить расходы на охлаждение резервуаров.

Применение ИЛ также позволяет предварительно проектировать и раздельно устанавливать освещение для каждой зоны теплицы.

Чтобы скорректировать и направить максимум света в нужный сектор используют оптические поверхности – экраны. Они фокусируют излучение на конкретном участке.

А с помощью специальных отражателей равномерно распределяют искусственный свет по всей высоте зеленых насаждений.

Правила выбора ИЛ

Выбирая индукционные устройства освещения, важно учитывать их конструктивные особенности, эксплуатационные характеристики, а также степень безопасности.

Лишь при соблюдении такого подхода ИЛ можно считать целесообразным приобретением.

Сегодня в специализированных магазинах несложно найти индукционные безэлектродные лампы мощностью от 15 Вт до 500 Вт. Но существуют и более мощные, предназначенные для различных производственных нужд.

Лампы с овальной колбой выпускаются для светильников со стандартными патронами E14, E27 и E40.

Также есть специальные прямоугольные и кольцевые виды индукционных осветительных устройств, которые могут работать как в сети переменного тока, так и постоянного.

Стоит отметить, что индукционные лампочки в форме шара по размерам будут крупнее, чем обычные приборы с нитью накаливания, поскольку генератор ВЧ тока спрятан в цоколе. Это важно учитывать при покупке

Все индукционные светильники и безэлектродные лампы проходят обязательную сертификацию.

Поэтому можно с уверенностью говорить об их безопасности. Амальгама находится в запаянной колбе и при соблюдении базовых правил эксплуатации ее утечки исключены.

Однако нужно понимать, как и стандартные люминесцентные лампы, индукционные требуют соответствующей утилизации из-за наличия ртутных соединений и электронных комплектующих.

Твердую амальгаму – сплав ртути с другими металлами - можно использовать повторно. Стекло из лампы также сдают на переработку, но отдельно от люминофора.

Светильники с индукционной технологией не относятся к экологически безопасным видам освещения и в этом критерии сильно уступают светодиодам.

Необходимо добавить, что лампочка индукционного типа выходит на свой стабильный световой поток не сразу. На старте она выдает около 80% от полного излучения.

Чтобы этот показатель дошел до максимума, безэлектродной лампе нужно 2-3 минуты. За это время достаточно разогревается амальгама и испаряется необходимое количество ртути.

Выводы и полезное видео по теме

Индукционные светильники – новое поколение газоразрядных ламп. Принцип функционирования такого типа освещения:

Что делает лампы индукционными, особенности светильников этого вида и сфера применения:

Преимущества использования современных индукционных источников света на промышленных предприятиях:

Правильная установка ламп индукционного типа с соблюдением всех стандартов и норм позволяет эффективно использовать энергосберегающую технологию. Сегодня подобные источники света – разумная альтернатива традиционным подходам к организации освещения.

При выборе этих устройств освещения следует тщательно учитывать их долговечность, степень безопасности и эксплуатационные характеристики. Только при соблюдении такого подхода индукционные лампы будут целесообразным приобретением. А изготовление своими руками требует скрупулезного выполнения определенных правил.

Принцип действия

В общем виде мы можем говорить о модернизации обычной . Возле катушки образуется индукционное поле, провоцирующее в газовой составляющей колбы разряд. Результат подобного процесса – преобразование с помощью люминофора энергии разряда в необходимое нам свечение. Но характеристики таких приборов на порядок превосходят другие осветительные приборы.

Основные элементы конструкции – герметично запаянная и наполненная газом лампа, подсоединенная к катушке индукционного типа. Варианты расположения катушки бывают наружными и внутренними. Сам балласт прибора тоже выполняется во встроенном и отдельном виде.

Высокочастотный трансформатор, в котором разряд выполняет функции вторичной обмотки – это в ракурсе наведения поля. Катушка, как первичная обмотка, подключается и к постоянным источникам тока, и к сети стандартного вида 38 и 220 Вольт.

Виды индукционных светильников

Мощность приборов зависит от рабочей схемы и колеблется в диапазоне 15-500 Ватт и более. Естественно, что наиболее мощные модели используются в промышленности. Стандартное исполнение патронов Е14, Е27, Е40 позволяет без затруднений переоборудовать обычные образцы в индукционные. Широко применяются также кольцевые лампы подобного вида.

Сборные модификации гораздо шире представлены в торговых точках, чем отдельные модели ламп. Предлагаются и специальные комплекты, для переоборудования, в которые входят система для крепления и индукционный прибор с патроном.

Плюсы и минусы индукционных светильников

Список недостатков привести достаточно легко – на сегодняшний день цена на такие изделия остается высокой. В пределах 700-1000 рублей обходится потребителям двадцативаттный прибор. Страхи по поводу содержания ртути абсолютно беспочвенны. Сравнение с люминесцентными образцами показывает значительно меньшее содержание этого вещества – до 0,5 мг. Лампы индукционного типа также имеют защиту, выполненную специальной амальгамой.

Главная особенность – отсутствие электродов.

Наличие этих элементов приводит к неравномерному нагреву и образованию вокруг них трещин и осадкам материала внутри баллона. Конструктивное исполнение индукционных ламп позволяет избежать подобных явлений.

Кроме этого, светильники этой категории имеют и другие достоинства:

  • отсутствует искажение света;
  • высокие параметры КПД – до 0,9;
  • значительные сроки эксплуатации – 60-150 тысяч часов;
  • нет каких-либо пауз между моментом включения и набором максимальной мощности;
  • большой диапазон температурного режима – от-40 до +60°С;
  • устойчивость к перепадам напряжения.

Среди всех существующих источников освещения лампы этой категории являются экологически наиболее чистыми. А значительно снижает выделение в атмосферу СО2.
Гарантия на большинство моделей составляет 5 лет.

Область применения

Технические характеристики позволяют монтаж таких осветительных приборов в любом месте загородного дома, дачного участка и коттеджа. Высокая стоимость быстро окупается, ведь на протяжении нескольких лет потребителю не придется заниматься вопросами обслуживания и покупки новых ламп.

При невозможности разовой установки во всех местах, желательно обустроить хотя бы зоны, где требуется бесперебойная работа светильников. Примером может быть оборудование индукционными источниками света систем охранного освещения.

Лампа индукционная своими руками

Конструкция этого светильника, схематически изображенная на верхнем рисунке, четко определяет, что изготовить сам прибор можно только в промышленных условиях. А вот установка в светильники, предназначенные для других источников света, вполне реальна и решает два основных требования потребителей:

  1. Возможность сэкономить на затратах при монтаже в ранее установленную систему.
  2. Не нарушать сложившиеся места замены приборов.

Первая задача успешно решается выпуском специальных адаптеров.

Идея очень проста и удобна при установке. Лампа без усилий вкручивается в цоколь старого источника света. Оставшийся отражатель формирует поток света индукционной лампы. Вместо удаленного балласта устанавливается его электронный аналог, необходимый в процессе эксплуатации нашего прибора. Существует вероятность небольшой потери потока света в отражателе.

А вот второй вопрос остается пока не до конца разрешенным. Накладные светильники выглядят довольно громоздко. Однако многие производители в индивидуальном порядке готовы предложить нестандартный подход к изготовлению моделей, где балласт и лампа компактно соседствуют на общем основании арматуры освещения.

Компактные модели ламп постепенно занимают все большую часть в этом сегменте рынка продаж. Ниже показана конструкция такого прибора, позволяющая без труда установить его в любом нужном месте.

Обустроить такое экономное освещение своими руками можно в больших торговых залах, на лестничных площадках, в коридорах и холлах офисов. Допустимое мерцание не так бросается в глаза при установке в настенных и потолочных светильниках. Эффективна работ в в южных регионах.
Правильная установка с соблюдением всех существующих нормативов позволяет воспользоваться всеми преимуществами современной энергосберегающей технологии и становится идеальной альтернативой традиционным системам освещения.

Похожие материалы.

Что такое индукционное освещение?

Индукционное освещение - это система новых технологий, которая сохраняет больше энергии и служит намного дольше, чем H.I.D. и энергосберегающие лампы. Это основывается на уникальном физическом принципе генерации света. Индукционные лампы - прорыв для профессионального и специального освещения. В индукционных лампах нет электродов благодаря чему достигается беспрецедентный срок службы в 100.000 часов. Все это сочетается с отличным качеством освещения и энергоэффективностью.

Принцип работы

Индукционная лампа состоит из трёх основных частей: газоразрядной трубки, внутренняя поверхность которой покрыта люминофором, магнитного кольца или стержня (феррита) с индукционной катушкой, электронного балласта (генератора высокочастотного тока). Возможны два типа конструкции индукционных ламп по виду индукции:

  • Внешняя индукция: магнитное кольцо расположено вокруг трубки.
  • Внутренняя индукция: магнитный стержень расположен внутри колбы.

Два типа конструкции индукционных ламп по способу размещения электронного балласта:

  • Индукционная лампа с отдельным балластом (электронный балласт и лампа разнесены как отдельные элементы).
  • Индукционная лампа с встроенным балластом (электронный балласт и лампа находятся в одном корпусе).

Электронный балласт вырабатывает высокочастотный ток, протекающий по индукционной катушке на магнитном кольце или стержне. Электромагнит и индукционная катушка создают газовый разряд в высокочастотном электромагнитном поле, и под воздействием ультрафиолетового излучения разряда происходит свечение люминофора. Конструктивно и по принципу работы лампа напоминает трансформатор, где имеется первичная обмотка с высокочастотным током и вторичная обмотка, которая представляет собой газовый разряд, происходящий в стеклянной трубке.

Характеристики

  • Длительный срок службы: 60 000 - 150 000 часов

(благодаря безэлектродному исполнению срок службы значительно выше, чем у традиционных источников света)

  • Номинальная светоотдача лмВт
  • Фотопическая эффективность (воспринимаемая глазом): 120 - 180 Флм/Вт (Данный параметр часто используется специалистами для качественной оценки источника света и способности восприятия света и оттенков цветов человеческим глазом. Например, натриевая лампа высокого давления имеет номинальную светоотдачу 70-150 лм/Вт, но реально воспринимается как источник света со светоотдачей 40-70 Флм/Вт)
  • Высокий уровень светового потока после длительного использования

(после 60 000 часов уровень светового потока составляет свыше 70% от первоначального);

  • Энергоэффективность: имеет большую эффективность по сравнению с лампами накаливания, электродными газоразрядными, электродными люминисцентными, светодиодами (кроме светодиодов ведущих производителей)
  • Отсутствуют термокатоды и нити накала
  • Мгновенное включение/выключение

(отсутствует время ожидания между переключениями, что является хорошим преимуществом перед ртутной лампой ДРЛ и натриевой лампой ДНаТ, для которых требуется время выхода на режим и время остывания 5-15 минут после внезапного отключения электросети)

  • Неограниченное количество циклов включения/выключения
  • Индекс цветопередачи (CRI): Ra>80

(комфортное освещение, мягкий и естественный излучаемый свет, что благоприятно сказывается на восприятии оттенков цветов, в отличие от натриевых ламп (Ra>30), которым присущ желто-оранжевый оттенок света и неестественная цветопередача);

  • Номинальные напряжения: 120/220/277/347В AC, 12/24В DC
  • Номинальные мощности: 12 - 500 Вт
  • Диапазон цветовых температур: 2700К - 6500К
  • Отсутствие мерцаний: рабочая частота от 190кГц до 250кГц или единицы мегагерц в зависимости от моделей
  • Низкая температура нагрева лампы: +60 °C - +85 °C
  • Широкий диапазон рабочих температур: −40 °C ~ +50 °C
  • Возможность диммирования (изменения интенсивности света): от 30% до 100%
  • Высокий коэффициент мощности электронного балласта (λ>0,95)
  • Низкие гармонические искажения (THD<5%)
  • Экологичность продукта: специальная амальгама; содержание твердотельной ртути <0,5мг, что значительно меньше, чем в обычной люминесцентной лампе

Индукционные светильники – достаточно новый вид осветительных приборов на отечественном рынке. Их популярность растет, однако многим потенциальным покупателям цена индукционных светильников кажется чрезмерно высокой. Очевидно, что для оценки целесообразности такого приобретения, необходимо принимать во внимание эксплуатационные характеристики, и срок службы индукционных светильников.

Устройство и принцип действия индукционных светильников

Принцип действия индукционного светильника достаточно прост: вокруг индукционной катушки возникает индукционное поле, в газе, наполняющем колбу, появляется разряд, люминофор преобразует энергию разряда в свечение. Очевидно, что никаких открытий, доселе неизвестных человечеству знаний, для создания индукционных светильников не потребовалось, и, по сути, эта новинка является привычной всем , подвергшейся модернизации. В то же время, результаты модернизации впечатляют, поскольку благодаря им индукционные светильники смогли получить эксплуатационные характеристики, заметно выделяющие их из ряда применяющихся до того осветительных устройств.

Индукционный светильник представляет собой наполненную газом люминофорную герметично запаянную лампу с подсоединенной к ней индукционной катушкой. Катушка может быть внутренней или наружной. Балласт индукционного светильника также может быть встроенным или отдельным.

С точки зрения наведения поля, лампа индукционного является высокочастотным трансформатором, в котором роль вторичной обмотки выполняет высокочастотный разряд внутри колбы. Первичная обмотка (катушка) может подключаться не только к стандартной сети 220 или 38 Вольт, но и к источнику постоянного тока.

Виды ламп индукционных светильников

Схема индукционной лампы позволяет выпускать изделия различной мощности — от 15 до 500 Ватт и выше, причем самые мощные лампы предназначаются для промышленного применения. Устройство ламп позволяет без особого труда переоборудовать обычный светильник в индукционный, для чего индукционные лампы выпускаются со стандартными патронами Е14, Е27, Е40. Кроме того, производятся кольцевые индукционные лампы.

Индукционные светильники в сборе встречаются в продаже чаще, чем отдельные лампы. Производятся и комплекты для преобразования обычных светильников в индукционные, включающие в себя индукционную лампу с патроном и систему крепления.

Преимущества и недостатки индукционных светильников

Основным недостатком индукционных светильников пользователи называют высокую . Цена двадцативаттной лампы 700-800, а у некоторых производителей и 1000 рублей.

Опасения по поводу содержания ртути в лампах индукционных светильников совершенно напрасны, поскольку содержание этого вещества у этого типа ламп намного меньше, чем у люминесцентных и составляет менее 0,5 мг. Кроме того, индукционные светильники защищаются специальной амальгамой.

Отсутствие электродов в индукционных лампах

Эту особенность называют среди основных преимуществ индукционных светильников, поэтому следует подробно остановиться на том, как она влияет на работу лампы.

При наличии электродов баллон лампы прогревается неравномерно, что приводит к образованию со временем вокруг электродов (место максимального нагрева). Кроме того, материал электрода при длительной эксплуатации осаждается на внутренней поверхности баллона. Такие изменения приводят к потере яркости, которая тем больше, чем дольше срок службы лампы и часто к моменту замены яркость источника составляет менее половины первоначального. Индукционные лампы без электродов лишены этого недостатка.

Светильники с индукционными лампами обладают и еще целым рядом достоинств :

  • срок службы – не менее 60 тыс. часов, у некоторых ламп – до 150 тыс. часов,
  • КПД = 0,9,
  • комфортный свет, отсутствие искажения цвета,
  • отсутствие мерцания,
  • отсутствие паузы между моментом включения светильника и набором им полной мощности (моментальное включение, отсутствие процесса «разгорания»),
  • отлично работают внутри помещения и на открытом воздухе в температурном диапазоне от -40 до +60 градусов,
  • гарантийный срок службы индукционных светильников составляет 5 лет,
  • хорошо переносит , сетевые «скачки».

Специалисты называют и дополнительные преимущества, касающиеся особенностей работы индукционных светильников и включающих в себя данные о фотооптической эффективности, индексе цветопередачи и пр., однако обычному пользователю для того, чтобы сделать выводы о работе этого типа осветительных приборов, приведенных выше данных вполне достаточно.

Устройство индукционных светильников позволяет установить их практически в любом месте дома, дачи или приусадебного участка. При желании ими можно заменить все приборы освещения и это будет экономически оправдано, поскольку в ближайшие несколько лет вопрос обслуживания и приобретения новых ламп на замену вышедшим из строя не будет волновать хозяев дома.

Если же стоимость индукционных светильников кажется потенциальному покупателю слишком высокой, целесообразно установить их в тех местах, где затруднено обслуживание приборов освещения, а также там, где принципиально важна бесперебойная работа источника света. В частности, мощные индукционные светильники, установленные в системе охранного освещения периметра землевладений, заметно повысят безопасность территории и минимизируют вероятность возникновения неприятных ситуаций.

Сколько стоят индукционные светильники?

Цены на индукционные светильники зависят не только от мощности лампы, но и от дополнительных свойств (взрывозащищенность, устойчивость к воздействию влаги и т.п.). Так, бытовая индукционная лампа мощностью 40 Вт с цоколем Е27 стоит порядка тысячи рублей.

Мощные светильники для теплиц (150 Вт) стоят 11-13 тысяч рублей. Цена небольших светильников для растений с лампами 40 Вт, устанавливаемых и не боящихся повышенной влажности – от 2,5 тысяч рублей. Офисный потолочный светильник с лампой такой же мощности обойдется в 4,5 тысячи рублей, а более мощный (80 Вт) стоит немногим более 6 тысяч рублей.

Парковый светильник с лампой на 40 Вт обладает повышенной устойчивостью к внешнему воздействию, не боится температурных перепадов и влажности и стоит, соответственно, дороже – 7-9 тысяч рублей.







(5 votes, average: 5,00 out of 5)

На рынке энергосбережения компания НаноСвет существует уже более семи лет и активно производит, поставляет и внедряет индукционные светильники. Однако первые свои решения внедрения экономичных источников света начиналась с поставок светодиодных светильников, собранных из корпусов светильников типа РКУ и установленных в них светодиодных блоков. Как показал практический опыт, в вышеуказанные типы корпусов возможна инсталляция светодиодов или кластеров лишь небольших мощностей, так как не обеспечивался требуемый теплоотвод. Попытки создать качественную модель светильника по данному принципу и аналогичную по световым характеристикам светильнику с лампой ДРЛ-250 были неудачными, так как светодиоды перегревались и быстро деградировали. Данный путь создания недорогих светодиодных светильников был пройден многими компаниями, схожие решения светодиодных светильников небольшой мощности можно встретить на рынке и сейчас.

Аналогичная ситуация была с первыми вариантами промышленных светодиодных светильников. Стояла задача по освещению промышленных предприятий, складов, ангаров и т.д. В основу корпуса выбирались традиционные варианты светильников типа РСП, ЖСП и т.д., в которые монтировались светодиодные модули. Но важно отметить, что если первые светодиодные уличные светильники в корпусах типа РКУ эксплуатировались в более щадящем температурном режиме, то промышленные, зачастую установленные под крышей цеха, подвергались серьезным температурным нагрузкам. Срок службы таких изделий был коротким. В кратчайшее время светильники синели или зеленели. Либо блоки питания быстро выходили из строя. Со временем многие производители промышленных светильников стали учитывать все конструктивные особенности и температурные режимы светодиодных источников света.

Краткая история создания индукционных и светодиодных источников света

23 июня 1891 года, Николай Тесла получил патент США № 454622 на создание прототипа современной индукционной лампы и вошел в историю электротехники как изобретатель более эффективного и экономичного источника света, чем лапа накаливания.

Прототип первой индукционной лампы, запущенной в массовое производство был представлен компанией PHILIPS в 1976 году. Можно считать, что примерно в те же годы появились полноценные индукционные светильники. Принцип действия ламп серии MasterQL до сегодняшнего дня особо не поменялся. Некоторые производители индукционных ламп до сих пор копируют их, но, естественно, под своим брендом.

Как ни странно, но история светодиодных источников света начинается практически с тех же времен. Первое известное сообщение об излучении света твердотельным диодом было сделано в 1907 г. британским экспериментатором Генри Раундом из лаборатории Маркони.

В 1923 г. наш соотечественник Олег Владимирович Лосев, проводя радиотехнические исследования, заметил голубоватое свечение, испускаемое некоторыми полупроводниковыми детекторами. Однако интенсивность излучения была столь ничтожной, что научная общественность фактически «не увидела» его, по крайне мере, в переносном смысле, так как в электронике тех дней происходили более значимые вещи.

Первые светодиоды промышленного назначения были созданы Ником Холоньяком в лабораториях Университета штата Иллинойс (США) и именно Ник Холоньяк считается «отцом» современных светодиодов.

В шестидесятые годы двадцатого столетия были созданы первые образцы светодиодных ламп. Они были очень дороги и использовались только как индикаторы-сигнализаторы. Световая отдача их была 1-2 лм/Вт. Их практическое применение было очень ограничено.

В 1968 году создана первая светодиодная лампа, предназначенная для индикатора Monsanto, в этом же году в США компания Hewlett-Packard выпустила в свет самый первый в мире светодиодный экран, предназначенный для рекламы. Это был слабосветящийся дисплей, информация на котором отображалась только красным цветом.

Начиная с 1985 г. удалось увеличить поток света до 10 лм. и появилась возможность их применения в качестве самостоятельных световых элементов (к примеру – лампочки в автомобилях).

В начале 90-х гг. малоизвестная японская фирма «Hure» выбросила на рынок светодиоды в десятки раз более яркие, чем все их предшественники, светоотдача перешагнула рубеж в 30 лм/Вт. С этого времени светодиоды становятся адекватной альтернативой лампам накаливания.

В этом же году крупнейшие западные компании инвестировали свыше 70 миллионов долларов в исследовательскую деятельность, связанную с возможностью применения и производства светодиодов.

К концу 2006 г. светодиоды заняли прочные позиции на современном рынке, и сфера их применения значительно расширилась.

Промышленные энергосберегающие светильники, как категория наиболее энергоемких источников света

В данной статье мы постараемся рассмотреть вопросы, связанные с внедрением промышленных энергосберегающих светильников, так как по нашему мнению именно этот вид источников света является одним из самых наиболее энергоемких. Первые опыты по созданию недорогих светодиодных светильников начинались с создания светодиодных светильников собранных из корпусов светильников типа РКУ ЖКУ и установленных в них светодиодных блоков. Как показал практический опыт, в вышеуказанные типы корпусов возможна инсталляция небольших мощностей светодиодов или кластеров на их основе, так как в вышеприведенный вариант выбора корпуса не обеспечивается требуемый теплоотвод для светодиодных плат. Данный путь создания недорогих светодиодных светильников был пройден многим компаниями, схожие решения светодиодных светильников небольшой мощности можно встретить и сейчас. Попытки создать модель аналогичную по световым характеристикам светильнику с лампой ДРЛ 250 на основе штампованных корпусов из стали в основном были обречены на неудачу. В таких решениях светодиоды через незначительный промежуток времени перегреваются и начинают менять цвет, а это значит что период эксплуатации таких «поделок» существенно ниже заявляемых 50000 часов.

Наработав большую клиентскую базу, а так же проанализировав огромное количество обращений в нашу компанию по вопросам энергосбережения, стало ясно, что наиболее остро в экономии нуждаются промышленные предприятия. Это и понятно, как правило, высота установки промышленных светильников превышает 5-6 метров, а иногда достигает и 12-15 метров. Режим работы систем освещения на многих предприятиях составляет 12 или 24 часа. В этих условиях вопрос энергосбережения стоит особенно остро. Каким источником света заменить лампы ДРЛ, ДНаТ или МГЛ?

Ниже приведена сравнительная таблица некоторых видов ламп

Тип лампы Средний срок службы (часов горения) КПД устройства Эффективность (Лм/Вт) Уменьшение светового потока к концу срока службы лампы Температура эксплуатации Гарантийный срок Обслуживание в процессе эксплуатации 5 лет
Индукционная 100000 0.98 80-110 10-15% -42…+50 5-10 лет Технологическая чистка
Накаливания 1000 0.1 41794 40-60% -50…+70 Нет Замена ламп
Ртутная высокого давления 4000 0.85 20-24 40-60% -40…+40 Нет Замена ламп и ПРА
Люминесцентная 8000 0.85 26-29 40-50% +10…+40 Нет Замена ламп и ПРА
КЛЛ 8000 0,5-0,85 18-22 15-30% -20…+40 3 мес Замена ламп
Натриевая высокого давления 2000 0.85 42-50 40-60% -20…+40 Нет Замена ламп и ПРА
Металлогалогенная 8000 0,65-0,8 24-36 15-20% -20…+40 Особые условия Замена ламп и ПРА
Светодиодная 50000 0.93 95-123 20-30% -45…+60 3-5 года Технологическая чистка

Очевидно, что за последние пару лет рынок промышленного энергосберегающего освещения существенно вырос, причем он развивается как интенсивным, так и экстенсивным способом. С ростом количества предложений, появились модели светильников созданные явно дилетантами, далекими от понимания физических процессов в полупроводниковых источниках света. Но надо отдать должное, что некоторые производители добились явного успеха в разработке конструктивов и источников питания LEDсветильников, а так же созданием моделей с заданными параметрами световых потоков. Если проанализировать рынок светодиодных светильников, представленный разными производителями, то ассортиментный перечень наиболее широко представлен мощностями от 6-15 Вт до 40-60 Вт (световой поток светильников до 5-6 тысяч люменов). Это источники света для ЖКХ, множественные модификации светильников в потолки типа «армстронг», уличное освещение с небольших высот и т.д. После этого «мощностного» рубежа, количество моделей существенно снижается.

Это обусловлено тем, что для производства светодиодных светильников мощностью от 120-150 Вт и выше требуются специальные расчеты, обеспечивающие создание необходимой геометрии корпуса светильника для оптимального функционирования светодиодов. Можно с уверенностью сделать вывод, что конструкция мощного светодиодного светильника, выполненного с учетом всех требований по теплоотводу, оптимальными характеристикам драйвера является сложным техническим изделием. Именно к этой категории и относятся источники света для освещения цехов, складов терминалов и т.д

Промышленные энергосберегающие светильники на основе индукционных ламп существенно отличаются строением и требованиям к теплоотводу. Так, температура нагрева лампы не превышает 80-85 градусов по Цельсию и данный параметр лишь косвенно влияет на физические процессы получения света. Еще важно отметить один принципиальный момент, отличающий промышленные светодиодные светильники от индукционных. В случае выхода из строя первого, для его ремонта необходимо провести демонтаж оборудования и передать в торгующую организацию или на завод производитель. Как правило, в данном случае ремонт не сможет быть произведен по месту установки. Этой проблемы нет с индукционными источниками света. Достаточно просто приобрести или саму лампу или ПРА (балласт) к ней. Замену вышедшего из строя источника света может осуществить любой электрик предприятия без специальной подготовки. К тому же, гарантия на большинство светодиодных светильников не превышает три года против пяти лет на индукционные лампы или светильник на их основе.

Важным фактором в пользу создания энергосберегающих систем освещения на основе индукционных ламп является возможность использовать уже установленные корпуса светильников подвесного типа. При помощи специальных переходников под цоколь Е40 или Е27 возможна установка ламп в традиционные корпуса РСП (ЖСП). Данная функция позволяет существенно снизить затраты заказчика при переводе существующей системы освещения на энергосберегающую индукционную. Так в мае 2012 года, нашей компанией был реализован комплекс работ по переоснащению системы освещения ремонтных зон и выставочных залов у одного официальных дилеров NISSANв России – NATCGROUP. В установленные корпуса из алюминия и поликарбоната было установлено более 100 индукционных ламп мощностью 200 Вт. Замена ламп ДНаТ и МГЛ позволила сделать цвета выставленных в зале автомобилей машин более насыщенными и яркими, а так же обеспечить более комфортный свет для сотрудников ремонтных цехов.

В настоящее время ведется работа по переоснащению ряда промышленных цехов на предприятиях Московской, Курской и Белгородской областях.

Сравнительная стоимость индукционных промышленных светильников и светодиодных

Если проанализировать зависимость цены светодиодного светильника от его мощности или светового потока, то видно, что после рубежа в 50-60 Вт цена светильника возрастает в геометрической прогрессии при увеличении потребляемой мощности на каждые 20-30 Вт. Так, согласно статистики, цена заявляемого промышленного светодиодного светильника со световым потоком 8000-11000 лм, являющегося аналогом светильника РСП с лампой ДРЛ-250 находится в ценовом коридоре от 13 до 27 тысяч рублей. Возможно, некоторые компании могут предложить и более низкую цену, но качество таких изделий вызывает явные сомнения, поэтому в расчет мы будем брать продукцию, производители которой дают гарантию не менее 3 лет.

В открытых источниках информации взята информация по стоимости светодиодных промышленных светильников серии УСС одного из крупных российских производителей. Данные актуальны на начало июня 2012 года.

Проведем сравнение:

№п/п Модель светильника/аналог Потребляемая мощность Световой поток,лм Цена, руб с НДС Гарантия, лет
1 УСС 36/100 38 вт 3600 11700-00 3
2 HB-01 40W 40 вт 3200 6880-00 5
3 УСС 70/100 75 вт 7200 18500-00 3
4 HB-01 100W 100 вт 8000 8223-00 5
5 УСС150/100 150 вт 14400 35000-00 3
6 HB-01 150W 150 вт 12000 9940-00 5

Как видно из сравнения стоимостных характеристик, стоимость единицы светового потока (отношение Люмен/рубль) более привлекательное у индукционных светильников, чем у светодиодных. Причем, чем выше мощность осветительного оборудования, тем разница в ценах будет более существенной.

Сравнение параметров светодиодных и индукционных источников света

1. Срок службы индукционных ламп составляет от 60000-150000 часов, против 30000-50000 часов у светодиодных светильников;

2. Светоотдача индукционных ламп несколько ниже, чем у светодиодных – 80-110 лм/Вт, для сравнения у светодиодных светильников 90-120;

3. Приблизительно равный КПД 0.9 (0.9-0.95 у светодиодов);

4. Уменьшение светового потока к концу срока службы на 10-15% через 30000 часов. У светодиодов, за этот период деградация составит не менее 30%);

5. Большой гарантийный срок – 5 лет, у большей части светодиодных светильников – 2-3 года;

6. Высокая фотооптическая эффективность 120-200Флм/Вт. У светодиодов 40-90 Фл/Вт;

7. Цена ниже в 3-5 раз по сравнению со светодиодным светильником той же мощности;

8. Высокий индекс цветопередачи Rа>80-83, т.е. комфортный, мягкий свет, приятный для глаз. В настоящее время большинство светодиодов выпускается с индексом цветопередачи 70-75 Ra. В отличие от светодиодного света, у индукционного отсутствует блесткость;

9. Низкая температура нагрева лампы, всего 60-80 градусов по Цельсию и широкий диапазон рабочих температур от -40 до +60;

10. Высокий коэффициент мощности до 0.95;

Индукционное освещение: выводы

Стараясь объективно рассмотреть два источника света для решения задач освещения промышленных предприятий, по многим параметрам индукционные лампы опережают светодиодные. Важнейшим фактором в пользу индукционного света является период окупаемости энергосберегающих проектов на их основе. По нашим просчетам для действующего предприятия он не превышает 2-2,5 года, а для строящегося вновь – не более года. Период окупаемости проектов на индукционных светильниках существенно ниже гарантийного срока службы индукционных ламп и светильников на их основе. Это значит, что еще 2-3 года, до окончания гарантии на индукционные лампы после возврата инвестированных средств в энергосберегающую систему освещения, предприятие будет получать прибыль за счет сэкономленных финансовых ресурсов на освещение.

Безусловно, у светодиодных светильников есть своя ниша рынка, но как показывает практика и расчеты, из-за высокой стоимости оборудования, проекты энергосберегающего освещения на их основе пока не получили широкого внедрения. По нашему мнению, у индукционных ламп и светильников на их основе более реальные перспективы в ближайшие годы.

В последнее время все чаще уделяется вопрос управляемым системам освещения. На основе светодиодом уже получены успешные решения уличного и промышленного освещения. Технические специалисты нашей компании ведут работы по созданию энергосберегающих систем освещения на основе индукционных ламп. В третьем квартале 2012 года мы планируем получить первые серийные образцы данных решений. Об успехах в данном направлении мы сообщим в следующих номерах журнала.

Похожие статьи