Coil32 - Однослойная катушка. Фундаментальные исследования Если в устройстве соленоида нет сердечника, то при подключении постоянного тока вдоль обмотки образуется магнитное поле

Эскизы однофазных: электромагнитов переменного тока с различными типами магнитопроводов показаны на рис.2.1 - 2.3. Амплитудное значение магнитного потока Ф m при действующем значении напряжении питания U , частоте f и числе витков обмотки W без учета активного сопротивления обмотки определяется по формуле

Ф m = U/(4, 44 f W) . (2.1)

Число витков обмотки приближенно равно

W = U/ (4, 44 f Ф m) . (2.2)

С учетом активного сопротивления обмотки (коэффициент k n =0,7 + 0,9) при заданной индукции в рабочем зазоре B em и активном сечении магнитопровода S m число витков

W = k n U/ (4, 44 f B em S m) . (2.3)

Амплитудное значение силы для однофазных систем без экранирующего витка при равномерном поле в рабочем зазоре и ненасыщенной магнитной системе определяется по формуле Максвелла (2):

Р эм = Ф 2 m / (2m 0 S п), (2.4)

где S п - площадь полюса, м 2 .

Среднее значение силы

Р mψ = Р эм / 2 . (2.5)

Если магнитный поток изменяется по синусоидальному закону Ф i = Ф m sinwt, то мгновенное значение электромагнитного усилия, согласно (2.4),

Р э i = Р эм sin 2 wt = Р эм (1- cos 2wt). (2.6)

Методики определения электромагнитного усилия Р э в функции от величины зазора, а также от времени для электромагнитов переменного тока приведены в работах .

Рис.2.1. Эскиз электромагнита переменного тока с втягивающимся якорем, имеющим квадратное сечение: 1 - якорь; 2 - остов; 3 – обмотка

При определении основных размеров н параметров однофазных электромагнитов с экранирующими витками площадь сечения полюса (м 2) может быть найдена по приближенной формуле, полученной из уравнения Максвелла исходя из условия отсутствия вибрации якоря

S п = 1.12 к р Р пр. к ·10 -5 / В 2 d m , (2.7)

где к р = (1,1 - 1,3) - коэффициент запаса по силе; В 2 d m = (1/1,2) T л - индукция в рабочем зазоре, которую выбирают вблизи колена кривой намагничивания применяемых сталей; Р пр. к – расчетная противодействующая сила при притянутом якоре, Н (для двухкатушечного электромагнита с двумя рабочими зазорами Р’ пр. к = 0,5Р пр. к; S п =b·a - площадь сечения полюса, г; м 2 ; в/а = 1…2 - отношение ширины полюса к его толщине.


Рис. 2.3 Эскиз клапанного П-образного электромагнита переменного тока; 1 - якорь; 2 - сердечник; 3 - основа­ние; 4 - обмотка; 5 - экранирующий виток



Для двухкатушечного электромагнита при квадратном сечении полюса размер стороны квадрата (м), определяемый по приближенной формуле и условия превышения средней электромагиитной силы над противодействующей , равен


где Р п р - сила для той точки противодействующей характеристики, в которой произведение силы на зазор является максимальным.

При выбранной по уравнению (2,7) площади полюса S п ширина полюса (м) (при условии квадратного сечения) равна

где ∆ паз - ширина паза под экранирующий виток, выбирается из конструктивных соображений, м; k зс - коэффициент заполнения по стали.

Размер а 2 экранированной части полюса

а 2 = (b - ∆ паз)/ (1+ а э), (2.10)

где а э = 0,25 - 0,5 - отношение площади неэкраниреванной части полюса и экранированной.

Размер а 1 неэкранированной части полюса

а 1 = а э а 2. (2.11)

Электрическое сопротивление экранирующего витка (Ом)

1,11 π f μ 0 S n /δ к, (2.12)

где δ к - конечный зазор между якорем и полюсом, м.

Высота экранирующего витка (м)

h в = 2 (b +a 2 +2∆ в) / r в ∆ в, (2.13)

где ∆ в - толщина витка, м; = - удельное электрическое сопротивление материала экранирующего витка при температуре нагрева Q. Ом-м; d - температурный коэффициент сопротивления, I/ о C; - удельное электрическое сопротивление материала витка при Q 0 , Ом-м.

Определяется площадь полюса S э = а 2 b , охваченная витком, и площадь полюса S н = а 1 b, не охваченная витком. Если пренебречь потерями мощности в короткозамкнутом витке и падаиием МДС на стальных участках магнитной цепи, то можно рассчитать угол сдвига между магнитными потоками, преходящими через эти части полюса.

φ = arctg φ ≈ arctg ω λ δэк / τ в, (2.14)

где λ δэк - проводимость зазора в экранированной части полюса при притянутом якоре. Практически достигнуть φ = 90 о невозможно и обычно φ =50 - 80°.



Мгновенные значения усилий для неэкранированной P эн i , и экранированной Р ээ i частей полюса можно определить по формулам соответственно

P эн i = P эн m (1-cos 2 ωt) /2. (2.15)

P ээ i = P ээ m (1-cos 2 ωt) /2. (2.16)

где амплитуды усилий

P эн m = Ф 2 н m / (2 μ 0 S н). (2.17)

P ээт = Ф 2 э m / (2 μ 0 S 0). (2.18)

Амплитуды магнитных потоков:

Ф н m = Ф н m S н / S n. (2.19)

Ф э m = Ф э m S э / S n. (2.20)

Среднее значение суммарной силы, действующей на якорь,

P эΣ = P эн m / 2 + P ээ m / 2 = P энср + P ээср. (2.21)

Максимальное и минимальное усилия, действующие на якорь

P эΣ max = P эΣ + P ~ m , (2.22)

P эΣ min = P эΣ - P ~ m , (2.23)

Где - амплитуда усилия переменной составляющей.

Изменение электромагнитных сил во времени показано на рис.2.4.


Для устранения вибрации якоря должно выполняться условие P Σ min >P мех. Если его условие не соблюдается, то параметры экрана варьируются.

МДС обмотки (А) для двухкатушечного электромагнита с двумя экранирующими витками определяют по приближенной формуле

, (2.24)

Для магнитных систем с внешним притягивающимся якорем МДС обмотки (А) без учета магнитного сопротивления стали при заданном потоке в рабочем зазоре Ф δm находят по формуле

, (2.25)

где Z δ Σ - суммарной магнитное сопротивление, Г н -1 , выражение для которого находят по схеме замещения магнитной цепи. Для приближенных расчетов можно принять. Z δ Σ ≈ R δ Σ.

Площадь сечения обмоточного провода (м 2)

q = F / W ∆ пр, (2.26)

где ∆ пр - плотность тока в проводе, N/м.

Площадь обмоточного окна одной катушки в двухкатушечном электромагните (м 2) равна

Q 0 = 0,5 g W/ k з.м, (2.27)

где k з.м. - коэффициент заполнений обмотки по меди. Индуктивность обмотки

L = W 2 λ мΣ , (2.28)

где λ мΣ - эквивалентная магнитная проводимость системы, Гн.

Ток трогания (А) при начальной противодействующей силе Р пр (Н) для двухкатушечного электромагнита с двумя рабочими зазорами равен

, (2.29)

где dL/dδ - производная индуктивности по ходу якоря при начальном рабочем зазоре, Гн/м.

Амплитудное значение пускового тока при сопротивлении обмотки r 0

, (2.30)

где U m - aмплитудное значение напряжения питания.

Время срабатывания реле

Минимальное и максимальное время трогания

t тр мин = (arcsin k i тр) / (2 π f), (2.32)

t тр макс = [(arcsin (1-k i тр) – arcsin (1-k i тр)] / (2 π f) (2.33),

где k i тр = I тр /I m

Минимальное и максимальное время движения

где d - коэффициент рассеяния; Ф m - амплитуда магнитного потока В Σ , равная

Среднее значение тяговой (электромагнитной) силы электромагнита (Н) определяется по энергетической формуле

, (2.38)

где I = U/Z - ток в обмотке, А; ψ = E/(2 π f) – действующее значение среднего потокосцепления, В δ ;

ЭДС обмотки; dψ/dδ , dI/dδ - производные, определяемые методом графического дифференцирования зависимостей I = f (δ) и ψ = f (δ); -

полное сопротивление обмотки.

Построение тяговой характеристики Р эср = f (δ) производится в такой последовательности: задаваясь величиной зазора, определяют λ мэ, Z, I, E, ψ, строят зависимости I = f (δ) и ψ = f (δ), графическим методом определяют производные и dψ/dδ , dI/dδ. Эти значения подставляют в формулу (2.38).

Контрольное задание № 3. Расчет реле напряжения постоянного тока на герконах

Исходные данные

Студенты, у которых предпоследние цифры номера зачетной книжки от 0 до 3, применяют герконы типа КЭМ-1, от 3 до 7 - типа КЭМ-2, а от 7 до 9 - типа КЭМ-6. Номер варианта выбира­ется но последней цифре номера зачетной книжки в табл.3.1.

Требуется выбрать параметры обмотки управления для реле напряжения с внутренним расположением герконов.

Однажды, в очередной раз, перелистывая книгу, которую нашел у мусорного бачка, обратил внимание на простой, приблизительный расчет электромагнитов. Титульный лист книги показан на фото1.

Вообще их расчет это сложный процесс, но для радиолюбителей, расчет, приведенный в этой книге, вполне подойдет. Электромагнит применяется во многих электротехнических приборах. Он представляет собой катушку из проволоки, намотанной на железный сердечник, форма которого может быть различной. Железный сердечник является одной частью магнитопровода, а другой частью, с помощью которой замыкается путь магнитных силовых линий, служит якорь. Магнитная цепь характеризуется величиной магнитной индукции - В, которая зависит от напряженности поля и магнитной проницаемости материала. Именно поэтому сердечники электромагнитов делают из железа, обладающего высокой магнитной проницаемостью. В свою очередь, от магнитной индукции зависит силовой поток, обозначаемый в формулах буквой Ф. Ф = В S - магнитная индукция — В умноженная на площадь поперечного сечения магнитопровода — S. Силовой поток зависит также от так называемой магнитодвижущей силы (Ем), которая определяется числом ампервитков на 1см длины пути силовых линий и может быть выражена формулой:
Ф = магнитодвижущая сила (Ем) магнитное сопротивление (Rм)
Здесь Ем = 1,3 I N, где N - число витков катушки, а I - сила текущего по катушке тока в амперах. Другая составляющая:
Rм = L/M S, где L — средняя длина пути силовых магнитных линий, М - магнитная проницаемость, a S - поперечное сечение магнитопровода. При конструировании электромагнитов весьма желательно получить большой силовой поток. Добиться этого можно, если уменьшить магнитное сопротивление. Для этого надо выбрать магнитопровод с наименьшей длиной пути силовых линий и с наибольшим поперечным сечением, а в качестве материала - железоматериал с большой магнитной проницаемостью. Другой путь увеличения силового потока путем увеличения ампервитков не является приемлемым, так как в целях экономии проволоки и питания следует стремиться к уменьшению ампервитков. Обычно расчеты электромагнитов делаются по специальным графикам. В целях упрощения в расчетах мы будем также пользоваться некоторыми выводами из графиков. Предположим, требуется определить ампервитки и силовой поток замкнутого железного магнитопровода, изображенного на рисунке 1,а и сделанного из железа самого низкого качества.

Рассматривая график (к сожалению я его в приложении не нашел) намагничивания железа, нетрудно убедиться, что наиболее выгодной является магнитная индукция в пределах от 10 000 до 14 000 силовых линий на 1 см2, что соответствует от 2 до 7 ампервиткам на 1 см. Для намотки катушек с наименьшим числом витков и более экономичных в смысле питания для расчетов надо принимать именно эту величину (10 000 силовых линий на 1 см2 при 2 ампервитках на 1 см длины). В этом случае расчет может быть произведен следующим образом. Так, при длине магнитопровода L =L1+L2 равной 20 см + 10 см = 30 см, потребуется 2×30=60 ампервитков.
Если диаметр D сердечника (Рис.1,в)примем равным 2 см, то его площадь будет равна: S = 3,14xD2/4 = 3,14 см2. 0тсюда возбуждаемый магнитный поток будет равен: Ф = B х S= 10000 x 3,14=31400 силовых линий. Можно приближенно вычислить и подъемную силу электромагнита (P). P = B2 S/25 1000000 = 12,4 кг. Для двухполюсного магнита этот результат следует удвоить. Следовательно, Р=24,8 кг = 25 кг. При определении подъемной силы необходимо помнить, что она зависит не только от длины магнитопровода, но и от площади соприкосновения якоря и сердечника. Поэтому якорь должен точно прилегать к полюсным наконечникам, иначе даже малейшие воздушные прослойки вызовут сильное уменьшение подъемной силы. Далее производится расчет катушки электромагнита. В нашем примере подъемная сила в 25 кг обеспечивается 60 ампервитками. Рассмотрим, какими средствами можно получить произведение N J = 60 ампервиткам.
Очевидно, этого можно добиться либо путем использования большого тока при малом количестве витков катушки, например 2 А и 30 витков, либо путем увеличения числа витков катушки при уменьшении тока, например 0,25 А и 240 витков. Таким образом, чтобы электромагнит имел подъемную силу в 25 кг, на его сердечник можно намотать и 30 витков и 240 витков, но при этом изменить величину питающего тока. Конечно, можно выбрать и другое соотношение. Однако изменение величины тока в больших пределах не всегда возможно, так как оно обязательно потребует изменения диаметра применяемой проволоки. Так, при кратковременной работе (несколько минут) для проводов диаметром до 1 мм допустимую плотность тока, при которой не происходит сильного перегревания провода, можно принять равной 5 а/мм2. В нашем примере проволока должна быть следующего сечения: для тока в 2 а - 0,4 мм2, а для тока в 0,25 а - 0,05 мм2, диаметр проволоки будет 0,7 мм или 0,2 мм соответственно. Каким же из этих проводов следует производить обмотку? С одной стороны, выбор диаметра провода может определяться имеющимся ассортиментом проволоки, с другой - возможностями источников питания, как по току, так и по напряжению. Действительно, две катушки, одна из которых изготовлена из толстой проволоки в 0,7 мм и с небольшим числом витков - 30, а другая - из проволоки в 0,2 мм и числом витков 240, будут иметь резко различное сопротивление. Зная диаметр проволоки и ее длину, можно легко определить сопротивление. Длина проволоки L равна, произведению общего числа витков на длину одного из них (среднюю): L = N x L1 где L1 - длина одного витка, равная 3,14 x D. В нашем примере D = 2 см, и L1 = 6,3 см. Следовательно, для первой катушки длина провода будет 30 x 6,3 = 190 см, сопротивление обмотки постоянному току будет примерно равно? 0,1 Ом, а для второй - 240 x 6,3 = 1 512 см, R ? 8,7 Ом. Пользуясь законом Ома, нетрудно вычислить необходимое напряжение. Так, для создания в обмотках тока в 2А необходимое напряжение равно 0,2В, а для тока в 0,25А - 2,2В.
Таков элементарный расчет электромагнитов. Конструируя электромагниты, надо не только производить указанный расчет, но и уметь выбрать материал для сердечника, его форму, продумать технологию изготовления. Удовлетворительными материалами для изготовления сердечников в кружках являются прутковое железо (круглое и полосовое) и различные. железные изделия: болты, проволока, гвозди, шурупы и т. д. Чтобы избежать больших потерь на токах Фуко, сердечники для приборов переменного тока необходимо собирать из изолированных друг от друга тонких листов железа или проволоки. Для придания железу «мягкости» его необходимо подвергать отжигу. Большое значение имеет и правильный выбор формы сердечника. Наиболее рациональные из них кольцевые и П-образные. Некоторые из распространенных сердечников показаны на рисунке 1.

1

В комплексе для проверки магнитометров инклинометра для создания однородного направленного магнитного поля применяются кольца Гельмгольца и соленоид. Система «кольца Гельмгольца – соленоид» позволяет значительно уменьшить габаритные размеры установки и сократить количество позиционирований инклинометра в установке для выполнения проверки работоспособности магнитометров, что позволяет применять такой комплекс в полевых условиях. В статье приводится расчет параметров, а также моделирование и визуализация магнитного поля, создаваемого системой «кольца Гельмгольца – соленоид», в среде Comsol. Расхождение результатов моделирования в среде Comsol с расчетными значениями для областей пространства, где магнитное поле однородно, не превышает для соленоида 3 %, а для колец Гельмгольца 12 %. Расчеты и моделирование магнитных полей для системы «кольца Гельмгольца – соленоид» при заданных геометрических размерах и электрических параметрах питания системы показывают, что при позиционировании магнитометров проверяемого инклинометра в центре системы осуществлять проверку магнитометров инклинометра в полевых условиях возможно.

магнитное поле

соленоид

кольца Гельмгольца

магнитометр

инклинометр

проверка

1. Гормаков А.Н., Ульянов И.А., Федулов А.В. Комплекс для проверки магнитометров скважинных инклинометров в полевых условиях // НТВ «Каротажник». – Тверь: Изд. АИС, 2014. – Вып. 239. – С. 61–67.

2. Матвеев А.Н. Электричество и магнетизм. – М.: Оникс 21 век, 2005. – § 10, 35, 38, 40.

3. Огородников А.С. Моделирование в среде MATLAB – COMSOL 3.5a. Часть 1: учебное пособие. – Томск: Изд-во Томского политехнического университета, 2012. – 104 с.

4. Ульянов И.А., Гормаков А.Н., Федулов А.В. Комплекс для проверки магнитометров инклинометра // Патент России на полезную модель № 124790, опубл. 10.12.2013, Бюл. № 4.

5. Comsol Multiphysics URL: http://www. сomsol.com/ (дата обращения: 15.11.14).

Расчеты и моделирование магнитных полей для системы «кольца Гельмгольца - соленоид» проводились при проектировании и создании комплекса для проверки магнитометров инклинометра. Данный комплекс позволяет осуществлять проверку магнитометров инклинометра непосредственно на буровых площадках нефтегазовых месторождений.

Целью работы является подтверждение возможности создания однородного магнитного поля заданной величины в ограниченном геометрическими размерами установки объеме.

Общий вид комплекса представлен на рис. 1.

Комплекс состоит из установки 1 для базирования на ней проверяемого инклинометра 5, блока связи 2 с компьютером 3, соединительных кабелей и источника питания установки 4. Для работы с комплексом подходит любой персональный компьютер. Система «кольца Гельмгольца - соленоид» служит для создания постоянного направленного магнитного поля известной величины, с помощью которого осуществляется проверка магнитометров инклинометра.

Расчет колец Гельмгольца

Кольцами Гельмгольца называется система из двух одинаковых тонких катушек, расположенных соосно на расстоянии, равном их радиусу. В пространстве между катушками получается поле высокой однородности .

Суммарный модуль магнитного поля может быть получен из закона Био-Савара -Лапласа:

где µ 0 = 1,257·10 -6 Гн/м; I - ток, протекающий по виткам катушек колец, в амперах; R - радиус катушки, в метрах; х - расстояние по оси катушек, в метрах.

Катушки состоят из N витков. Общий ток N∙I.

Для системы двух колец Гельмгольца выражение магнитной индукции в геометрическом центре примет вид:

Магнитное поле, создаваемое кольцами Гельмгольца, в каждой точке продольной оси Х вычисляется по формуле:

(3)

Магнитометры инклинометра помещены в цилиндрический корпус диаметром 30 мм на расстоянии 10 мм друг от друга и расположены ортогонально. Длина самого магнитометра 28 мм. Исходя из этого, необходимо создать кольца Гельмгольца и соленоид таких размеров, магнитное поле которых будет равномерным в объеме, вдвое превышающем объем, занимаемый чувствительными элементами.

Исходя из технических требований к изделию, кольца Гельмгольца и соленоид должны питаться от одного источника, максимальный ток которого не должен превышать 0,3 А. Максимальный диаметр колец 300 мм. Диаметр используемого намоточного провода равен 0,45 мм. Считать рабочей зону, в которой погрешность максимального однородного магнитного поля не превышает 1 %. Такая погрешность допустима для осуществления проверки работоспособности магнитометров инклинометра.

Имея исходные данные, по формуле (2) можно вычислить число витков намоточного провода на каждом кольце:

(4)

Рис. 1. Общий вид установки

Рис. 2. Распространение магнитного поля в центре колец Гельмгольца вдоль оси Х

Сопротивление системы из 2-х колец:

, (5)

где ρ = 0,0178 Ом·мм²/м - удельное сопротивление меди; lср = π∙D∙n - длина провода в одном кольце. Действующее напряжение на концах намоточного провода колец определяется:

Расчетные значения индукции магнитного поля, созданного кольцами Гельмгольца вдоль оси Х, представлены на рис. 2. Зона максимального однородного магнитного поля с погрешностью в 1 % по оси Х составляет 90 мм.

Расчет соленоида

Диаметр соленоида должен быть максимальным и помещаться между кольцами Гельмгольца.

Исходные данные: радиус катушки Rк = 0,145 м; действующий ток I = 0,3 А; длина катушки lк = 0,3 м; диаметр провода dп = 0,00045 м; индукция магнитного поля соленоида В = 0,000060 Тл.

Напряженность магнитного поля:

(7)

Выражение для расчета напряженности магнитного поля соленоида:

(8)

где В - индукция создаваемого магнитного поля, Тл; I - сила тока, А; n - число витков на единицу длины, n = N/l; R - радиус соленоида, м; l - длина соленоида, м; x - координата точки на оси соленоида.

Индукция магнитного поля внутри соленоида , в середине продольной оси, то есть при x = l/2 вычисляется как:

(9)

Из формулы (9), имея известные данные магнитной индукции, силы тока и геометрических размеров соленоида, можно найти требуемое число витков намоточного провода:

Рис. 3. Распространение магнитного поля в центре соленоида вдоль оси Z

Шаг намотки провода на соленоид:

где t - шаг намотки провода, мм.

Сопротивление соленоида определяется, как

(12)

где d п - диаметр провода, м; ρ - удельное сопротивление меди 0,0178 Ом·мм²/м; Действующее напряжение определяется:

Расчетные значения индукции магнитного поля, созданного соленоидом вдоль оси Z, представлены на рис. 3.

Зона максимального однородного магнитного поля с погрешностью в 1 % по оси Z составляет 34 мм от центра соленоида в разные стороны.

Компьютерное моделирование магнитных полей

Моделирование магнитных полей, создаваемых системой «кольца Гельмгольца - соленоид», производилось в среде «Comsol» . Расчет магнитного поля выполнялся в модуле «Magnetic Fields (mf)» . Данные геометрических размеров, величины протекающих токов и количества витков использовались те же, что и при аналитическом расчете, а также, согласно техническому заданию, на разработку комплекса для проверки магнитометров инклинометра. Для более подробной визуализации распространения магнитных силовых линий в системе «кольца Гельмгольца - соленоид» представлены в упрощенном виде. Так как кольца Гельмгольца и соленоид включаются поочередно, то сначала моделируется работа соленоида, а затем работа колец Гельмгольца. На рис. 4, а показано распространение магнитных силовых линий в соленоиде.

Представленная на рис. 4, б, зависимость показывает, что зона максимального однородного магнитного поля с погрешностью, не превышающей 1 %, составляет 33 мм в обе стороны от центра соленоида по оси Z.

На рис. 5, а, показано распространение магнитных силовых линий поля при работе колец Гельмгольца.

а

б

Рис. 4. а - распространение магнитных силовых линий в соленоиде; б - величина магнитной индукции соленоида в зависимости от координаты точки, лежащей на продольной оси Z

а

б

Рис. 5. а - распространение магнитных силовых линий в кольцах Гельмгольца; б - величина магнитной индукции колец Гельмгольца в зависимости от координаты точки, лежащей на продольной оси Х

Представленная на рис. 5, б, зависимость показывает, что зона максимального однородного магнитного поля с погрешностью, не превышающей 1 %, составляет 40 мм в обе стороны от центра колец Гельмгольца по оси X.

Заключение

Результаты аналитического моделирования показывают расхождения с графиками зависимости величины магнитного поля от координаты точки по осям соленоида и колец Гельмгольца, полученными при моделировании в среде Comsol. Расхождение результатов моделирования в среде Comsol с расчетными значениями для областей пространства, где магнитное поле однородно, не превышает для соленоида 3 %, а для колец Гельмгольца 12 %. Это связано с тем, что при использовании катушек колец Гельмгольца с большим количеством витков вторая производная при разложении в ряд Тейлора не равна нулю для пар витков, находящихся на расстоянии, отличном от R/2 вдоль оси Х, относительно геометрического центра системы. Вследствие чего неоднородность магнитного поля увеличивается. Расчеты и моделирование магнитных полей для системы «кольца Гельмгольца - соленоид» при заданных геометрических размерах и электрических параметрах питания системы показывают, что при позиционировании магнитометров проверяемого инклинометра в центре системы осуществлять проверку магнитометров инклинометра в полевых условиях возможно.

Рецензенты:

Дмитриев В.С., д.т.н., профессор НИ ТПУ, г. Томск;

Бориков В.Н., д.т.н., директор института неразрушающего контроля НИ ТПУ, г. Томск.

Работа поступила в редакцию 09.02.2015.

Библиографическая ссылка

Гормаков А.Н., Ульянов И.А. РАСЧЕТ И МОДЕЛИРОВАНИЕ МАГНИТНЫХ ПОЛЕЙ, СОЗДАВАЕМЫХ СИСТЕМОЙ «КОЛЬЦА ГЕЛЬМГОЛЬЦА – СОЛЕНОИД» // Фундаментальные исследования. – 2015. – № 3. – С. 40-45;
URL: http://fundamental-research.ru/ru/article/view?id=37081 (дата обращения: 01.09.2019). Предлагаем вашему вниманию журналы, издающиеся в издательстве «Академия Естествознания»

Кто изготавливал лично соленоиды? Столкнулся с трудностями в расчетах и решил выложить вопросы с рассуждениями сюда, заодно пригодится может кому.

Соленоид это електромагнит с подвижным якорем. Якорь играет роль возвратно поступательного механизма. Используются в електрозамках дверей машин и других областях. В моем случае соленоид выполняет функцию плавного регулятора давления в системе: Дроссель, електромагнит и левый конец пружины статически зафиксированы, правый конец пружины и рычаг крана соеденены. При подачи тока в катушку якорь втягивается, соотвественно тянет за собой рычаг, рычаг тянет пружыну и осуществляется плавный ход если добавлять ток. Если ток сбросит - рычаг вернется в исходное положение, которое задает пружина и поток будет перекрыт.

Альтернативой есть актуатор, это електродвигатель + винтовая передача. Видео на ютубе ищите. Минус в том, что оно слишком медленное.

В общем перелопатил я весь интернет в поисках информации по соленоидам и електромагнитам нашел тонны знаний, но без особой конкретики, или это мне так тяжело собрать все в кучу. Тем не менее точных понятных доступных формул я так и не нашел. Даже строители гаусганов пользуются фиксироваными парамтерами и подбирают все методом проб.

Вот что есть на данный момент:

R=U\I

R-требуемое сопротивление исходя из параметров источника питания

L=(SR)\g

L-длинна катушки

S-площадь проводника

g-удельное сопротивление меди 0,0175 ом*мм2/м

В нашем случае для примера источником питания является "крона", 9 вольт напряжение и 500мАч емкость (I не указано на корпусе, взял стандарт с гугла)

Провод медный сечение 0.8мм, значит радиус 0.4, площадь =piR2= 3.14*0.4*0.4 = 0.5024мм2

Ток в аккумуляторах высчитывается по формуле= емкость делено на 20 часов. Это значит, что полный расход произойдет за 20 часов с напряжением 9 вольт и током 0.025 А, I = 500\20=0.025A

Сопротивление системы равно = R=9\0.025=360Om

Значит длинна провода

L= (0.5024*360)\0,0175= 10335 мм = 10м

Надо так много провода на относительно маломощный соленоид. Что ж, попробуем.

В итоге получилась высота катушки 5см, внутренний диаметр 0.5см, внешний где-то 2см, и 6.5 слоев намотки провода. Витки не считал.

Результат вообще нулевой, вставив гвоздь в середину ели притянулась к гвоздю шайбочка маленькая. Отчаявшись решил сделать простой електромагнит - намотал 1 метр провода прямо на гвоздь в несколько слоев, так же результат мизерный.

Игорь Мухин сделал программу (http://imlab.narod.ru/M_Fields/Coil10/Coil10.htm ) для расчетов соленоида, исходные данные:

R1 - внутренний радиус соленоида

R2 - внешний радиус соленоида

H - высота соленоида

D - диаметр обмоточного провода

и напряжение

Результативные данные: Ток, Индуктивность, Сопротивление, Количество витков, индукция то есть тяга

(в софте надо изменить точки на запятые что бы заработало)

Похожие статьи

  • Лучшие кастомные прошивки для Android

    Самый простой способ серьезно обновить свой гаджет - установить на него кастомную прошивку. С ней ты сможешь не только расширить число средств контроля над системой, но и попробовать что-то новое, получить много удобных функций или даже...

  • Обзор Major II Bluetooth — стоит ли покупать легендарные наушники от Marshall?

    Выбор редакции Обзор Major II Bluetooth — стоит ли покупать легендарные наушники от Marshall?Что ни говори, а фирма Marshall является одной из лучших фирм, работающих в сфере производства музыкального оборудования.Любое устройство,...

  • ОС и программное обеспечение

    Xiaomi Redmi Note 4X – практически идеально сбалансированный по параметрам и цене смартфон. Одним из его преимуществ является мощный процессор, который предложен в двух вариациях. С одной стороны, это дает пользователям дополнительный...

  • Моддинг конвертора USB-to-SATA под собственные нужды

    Жесткий диск или винчестер - неотъемлемая часть любого компьютера.Также он является одним из самых дорогих комплектующих, поэтому неправильный выбор, подключение и использование может привести к выходу из строя как самого винчестера, так и...

  • Установка ssd msata на материнскую плату

    С каждым днём всё больше пользователей задумывается над вопросом: как производится замена HDD в ноутбуке на SSD? Эта тема сейчас особенно актуальна: жёсткий диск как в мобильном компьютере изживает своё.Менять или не менять? Вот в чем...

  • Изменение ключа продукта Office

    — достаточно простая и понятная процедура (ну хотя бы более менее), чем то, что мы собираемся рассмотреть далее в этой статье. Как быть, если вы хотите сделать с лицензией что-то более продвинутое и сложное, например, такие вещи как, как...