Что дает процессор в играх. Нужен ли мощный процессор для компьютерных игр? На что влияет его частота

Привет, друзья! Как вы, вероятно, уже знаете, все видеокарты оборудованы GPU, то есть графическими процессорами. Одним из ключевых параметров при работе устройства, является частота графического процессора, на что влияет эта характеристика, я расскажу в сегодняшней публикации.

Зачем нужен графический процессор

Этот чип в видеокарте занят самым важным делом: он рендерит графику, просчитывая 2D и 3D объекты и их взаимодействие между собой и тем самым формируя изображение, передаваемое затем на дисплей монитора. Благодаря особенностям архитектуры, этот чип гораздо эффективнее обрабатывает графику по сравнению с центральным процессором, несмотря на меньшую мощность.

Такой чип может быть как составной частью видеокарты, так и быть интегрированным в северный мост материнской платы или как логический блок на ЦП. Как правило, последние два типа менее мощные и подходят для выполнения повседневных задач, но слабо справляются с рендерингом сложных объектов.

На что влияет его частота

Тактовая частота ядра – количество операций, которые графический процессор выполняет в секунду. На сегодняшний день у мощных видеокарт этот показатель уже перевалил за гигагерц.

Чем выше тактовая частота, тем больше данных может обработать графический ускоритель. Это влияет не только на количество FPS в играх, но и на количество примитивов в отрендеренных объектах, то есть на качество графики.

Таких показателей удалось добиться, благодаря уменьшению техпроцесса графического чипа, увеличив количество логических блоков на той же площади кристалла. Подробнее о техпроцессе видеокарты вы можете почитать .

Два главных конкурента, которые выпускают графические чипы, Nvidia и AMD, постоянно соревнуются за повышение частотных характеристик.
Выпустить новую топовую модель, которая по техническим параметрам хотя бы на пару месяцев заткнет за пояс конкурентов – уже скорее дело престижа, а не насущная потребность рынка.

Даже в развитых странах не каждый геймер может позволить себе такое устройство.

Можно ли увеличить частоту и зачем это делать

Существует целый ряд программ, которые позволяют выполнить boost графического чипа, повысив его частотные характеристики (конечно, если компонент поддерживает такую опцию). Сюда можно отнести:

  • ASUS GPU Tweak – лучше всего работает с видеокартами именно этого бренда, открывая пользователю доступ к дополнительным опциям;
  • MSI Afterburner – всеядная утилита, которой все равно, что разгонять;
  • RivaTuner – «прародитель» всех современных программ для оверклокинга, на основании наработок которого, созданы все последующие продукты.

Кроме повышения частоты графического процессора, эти утилиты умеют увеличивать частоту памяти, регулировать скорость вращения кулеров и многое другое. «Что это дает в практическом плане?» – может спросить внимательный читатель.

Увеличение тактовой частоты, как можно догадаться, позволяет увеличить качество графики и количество ФПС в играх программными средствами, то есть не покупая новую видеокарту.

Такой «костыль» можно использовать как временное решение, когда юзер еще морально не созрел для покупки нового девайса, однако уже хочется поиграть в новинку, которую комп не вытягивает по системным требованиям.

При этом следует учитывать, что разгон видеокарты требует аккуратного и вдумчивого подхода – если переборщить с увеличением частоты и «дать копоти» больше, чем видеокарта реально сможет вытянуть физически, происходит перезапуск графического драйвера, что обычно ведет к крашу запущенной игры или видеоредактора.

Сломать девайс таким способом очень сложно, из‐за предусмотренной программистами «защиты от дурака».Однако хочу также отметить, что особо настойчивые фанаты оверклокинга умудряются таки сжечь видеокарту, дав ей повышенную нагрузку и убрав количество оборотов кулера до минимума.
В качестве рекомендации, советую обратить внимание на видеокарту Asus PCI‐Ex GeForce GTX 1060 Dual 3GB (DUAL‐GTX1060‐O3G), которая потянет все современные игры на приемлемых настройках графики.

К сожалению, для майнинга такой продукт подходит хуже, чем аналогичная по цене видяха от AMD. Ну тут уже такое – или в игры гонять, или крипту майнить, не так ли?

Полезными могут оказаться публикации « » и « ?». А на сегодня у меня все.

До новых встреч на страницах моего блога, дорогие друзья! Не забудьте расшарить эту статью в социальных сетях и на новостную рассылку.

Многие игроки ошибочно считают главной в играх мощную видеокарту, однако это не совсем правда. Конечно, многие графические настройки никак не влияют на CPU, а только затрагивают графическую карту, но это не отменяет того факта, что процессор никак не задействуется во время игры. В этой статье мы подробно рассмотрим принцип работы ЦП в играх, расскажем, почему нужно именно мощное устройство и его влияние в играх.

Как известно, CPU передает команды с внешних устройств в систему, занимается выполнением операций и передачей данных. Скорость исполнения операций зависит от количества ядер и других характеристик процессора. Все его функции активно используются, когда вы включаете любую игру. Давайте подробнее рассмотрим несколько простых примеров:

Обработка команд пользователя

Практически во всех играх как-то задействуются внешние подключенные периферийные устройства, будь то клавиатура или мышь. Ими осуществляется управление транспортом, персонажем или некоторыми объектами. Процессор принимает команды от игрока и передает их в саму программу, где практически без задержки выполняется запрограммированное действие.

Данная задача является одной из самых крупных и сложных. Поэтому часто случается задержка отклика при движении, если игре не хватает мощностей процессора. На количестве кадров это никак не отражается, однако управление совершать практически невозможно.

Генерация случайных объектов

Многие предметы в играх не всегда появляются на одном и том же месте. Возьмем за пример обычный мусор в игре GTA 5. Движок игры за счет процессора решает сгенерировать объект в определенное время в указанном месте.

То есть, предметы вовсе не являются случайными, а они создаются по определенным алгоритмам благодаря вычислительным мощностям процессора. Кроме этого стоит учитывать наличие большого количества разнообразных случайных объектов, движок передает указания процессору, что именно требуется сгенерировать. Из этого выходит, что более разнообразный мир с большим количеством непостоянных объектов требует от CPU высокие мощности для генерации необходимого.

Поведение NPC

Давайте рассмотрим данный параметр на примере игр с открытым миром, так получится более наглядно. NPC называют всех персонажей, неуправляемых игроком, они запрограммированы на определенные действия при появлении определенных раздражителей. Например, если вы откроете в GTA 5 огонь из оружия, то толпа просто разбежится в разные стороны, они не будут выполнять индивидуальные действия, ведь для этого требуется большое количество ресурсов процессора.

Кроме этого в играх с открытым миром никогда не происходят случайные события, которые не видел бы главный персонаж. Например, на спортивной площадке никто не будет играть в футбол, если вы этого не видите, а стоите за углом. Все вращается только вокруг главного персонажа. Движок не будет делать того, что мы не видим в силу своего расположения в игре.

Объекты и окружающая среда

Процессору нужно рассчитать расстояние до объектов, их начало и конец, сгенерировать все данные и передать видеокарте для отображения. Отдельной задачей является расчет соприкасающихся предметов, это требует дополнительных ресурсов. Далее видеокарта принимается за работу с построенным окружением и дорабатывает мелкие детали. Из-за слабых мощностей CPU в играх иногда не происходит полная загрузка объектов, пропадает дорога, здания остаются коробками. В отдельных случаях игра просто на время останавливается для генерации окружающей среды.

Дальше все зависит только от движка. В некоторых играх деформацию автомобилей, симуляцию ветра, шерсти и травы выполняют видеокарты. Это значительно снижает нагрузку на процессор. Порой случается, что эти действия необходимо выполнять процессору, из-за чего происходят просадки кадров и фризы. Если частицы: искры, вспышки, блески воды выполняются CPU, то, скорее всего, они имеют определенный алгоритм. Осколки от выбитого окна всегда падают одинаково и так далее.

Какие настройки в играх влияют на процессор

Давайте рассмотрим несколько современных игр и выясним, какие настройки графики отражаются на работе процессора. В тестах будут участвовать четыре игры, разработанные на собственных движках, это поможет сделать проверку более объективной. Чтобы тесты получились максимально объективными, мы использовали видеокарту, которую эти игры не нагружали на 100%, это сделает тесты более объективными. Замерять изменения будем в одних и тех же сценах, используя оверлей из программы FPS Monitor .

GTA 5

Изменение количества частиц, качества текстур и снижение разрешения никак не поднимают производительность CPU. Прирост кадров виден только после снижения населенности и дальности прорисовки до минимума. В изменении всех настроек до минимума нет никакой необходимости, поскольку в GTA 5 практически все процессы берет на себя видеокарта.

Благодаря уменьшению населенности мы добились уменьшения числа объектов сложной логикой, а дальности прорисовки – снизили общее число отображаемых объектов, которые мы видим в игре. То есть, теперь здания не обретают вид коробок, когда мы находимся вдали от них, строения просто отсутствуют.

Watch Dogs 2

Эффекты постобработки такие, как глубина резкости, размытие и сечение не дали прироста количества кадров в секунду. Однако небольшое увеличение мы получили после снижения настроек теней и частиц.

Кроме этого небольшое улучшение плавности картинки было получено после понижения рельефа и геометрии до минимальных значений. Уменьшение разрешения экрана положительных результатов не дало. Если уменьшить все значения на минимальные, то получится ровно такой же эффект, как после снижения настроек теней и частиц, поэтому в этом нет особого смысла.

Crysis 3

Crysis 3 до сих пор является одной из самых требовательных компьютерных игр. Она была разработана на собственном движке CryEngine 3 , поэтому стоит принять во внимание, что настройки, которые повлияли на плавность картинки, могут не дать такого результата в других играх.

Минимальные настройки объекты и частиц значительно увеличили минимальный показатель FPS, однако просадки все равно присутствовали. Кроме этого на производительности в игре отразилось после уменьшения качества теней и воды. Избавиться от резких просадок помогло снижение всех параметров графики на самый минимум, но это практически не отразилось на плавности картинки.

* всегда актуальные вопросы, на что стоит обращать внимание при выборе процессора, чтобы не ошибиться.

Наша цель в данной статье — описать все факторы влияющие на производительность процессора и другие эксплуатационные характеристики.

Наверняка ни для кого не секрет, что процессор – является главной вычислительной единицей компьютера. Можно даже сказать – самая главная часть компьютера.

Именно он занимается обработкой практически всех процессов и задач, которые происходят в компьютере.

Будь то — просмотр видео, музыка, интернет сёрфинг, запись и чтение в памяти, обработка 3D и видео, игр. И многого другого.

Поэтому к выбору Ц ентрального П роцессора, стоит отнестись очень тщательно. Может получиться ситуация, что вы решили поставить мощную видеокарту и не соответствующий её уровню процессор. В этом случае процессор, не будет раскрывать потенциал видеокарты, что будет тормозить её работу. Процессор будет полностью загружен и буквально кипеть, а видеокарта будет ожидать своей очереди, работая на 60-70% от своих возможностей.

Именно поэтому, при выборе сбалансированного компьютера, не стоит пренебрегать процессором в пользу мощной видеокарты. Мощности процессора должно быть достаточно для раскрытия потенциала видеокарты, иначе это просто выброшенные деньги.

Intel vs. AMD

*догонялки навсегда

Корпорация Intel , располагает огромными человеческими ресурсами, и почти неисчерпаемыми финансами. Многие инновации в полупроводниковой индустрии и новые технологии идут именно из этой компании. Процессоры и разработки Intel , в среднем на 1-1,5 года опережают наработки инженеров AMD . Но как известно, за возможность обладать самыми современными технологиями – приходится платить.

Ценовая политика процессоров Intel , основывается как на количестве ядер , количестве кэша , но и на «свежести» архитектуры , производительности на такт ватт , техпроцесса чипа . Значение кэш-памяти, «тонкости техпроцесса» и другие важные характеристики процессора рассмотрим ниже. За обладание такими технологии как и свободного множителя частоты, тоже придётся выложить дополнительную сумму.

Компания AMD , в отличии от компании Intel , стремится к доступности своих процессоров для конечного потребителя и к грамотной ценовой политике.

Можно даже сказать, что AMD – «Народная марка ». В её ценниках вы найдёте то, что вам нужно по очень привлекательной цене. Обычно через год, после появления новой технологии у компании Intel , появляется аналог технологии от AMD . Если вы не гонитесь за самой высокой производительностью и больше обращаете внимание на ценник, чем на наличие передовых технологий, то продукция компании AMD – именно для вас.

Ценовая политика AMD , больше основывается на количестве ядер и совсем немного — на количестве кэш памяти, наличии архитектурных улучшений. В некоторых случаях, за возможность обладать кэш памятью третьего уровня, придётся немного доплатить (Phenom имеет кэш память 3 уровня, Athlon довольствуется только ограниченной, 2 уровня). Но иногда AMD «балует» своих фанатов возможность разблокировать более дешёвые процессоры, до более дорогих. Разблокировать можно ядра или кэш-память. Улучшить Athlon до Phenom . Такое возможно благодаря модульной архитектуре и при недостатке некоторых более дешёвых моделей, AMD просто отключает некоторые блоки на кристалле более дорогих (программно).

Ядра – остаются практически неизменными, отличается только их количество (справедливо для процессоров 2006-2011 годов). За счёт модульности своих процессоров, компания отлично справляется со сбытом отбракованных чипов, которые при отключении некоторых блоков, становятся процессором из менее производительной линейки.

Компания много лет работала над совершенно новой архитектурой под кодовым именем Bulldozer , но на момент выхода в 2011 году, новые процессоры показали не самую лучшую производительность. AMD грешила на операционные системы, что они не понимают архитектурных особенностей сдвоенных ядер и «другой многопоточности».

Со слов представителей компании, следует ждать особых исправлений и заплаток, чтобы ощутить всю производительность данных процессоров. Однако в начале 2012 года, представители компании отложили выход обновления для поддержки архитектуры Bulldozer на вторую половину года.

Частота процессора, количество ядер, многопоточность.

Во времена Pentium 4 и до него – частота процессора , была главным фактором производительности процессора при выборе процессора.

Это не удивительно, ведь архитектуры процессоров — специально разрабатывались для достижения высокой частоты, особенно сильно это отразилось как раз в процессоре Pentium 4 на архитектуре NetBurst . Высокая частота, была не эффективна при том длинном конвейере, что был использован в архитектуре. Даже Athlon XP частотой 2Ггц , по уровню производительности был выше чем Pentium 4 c 2,4Ггц . Так что, это был чистой воды маркетинг. После этой ошибки, компания Intel осознала свои ошибки и вернулась на сторону добра начала работать не над частотной составляющей, а над производительностью на такт. От архитектуры NetBurst пришлось отказаться.

Что же нам даёт многоядерность ?

Четырёх-ядерный процессор с частотой 2,4 Ггц , в много-поточных приложениях, теоретически будет примерным эквивалентом, одноядерного процессора с частотой 9,6Ггц или 2-х ядерному процессору с частотой 4,8 Ггц . Но это только теоретически . Практически же, два двухъядерных процессора в двух сокетной материнской плате, будут быстрее одного 4-ядерного, на той же частоте функционирования. Ограничения по скорости шины и задержки памяти дают о себе знать.

* при условии одинаковых архитектур и количества кэш памяти

Многоядерность, даёт возможность выполнять инструкции и вычисления по частям. К примеру нужно выполнить три арифметических действия. Первые два выполняются на каждом из ядер процессора и результаты складываются в кэш-память, где с ними может быть выполнено следующее действие любым из свободных ядер. Система очень гибкая, но без должной оптимизации может и не работать. Потому очень важна оптимизация под многоядерность для архитектуры процессоров в среде ОС.

Приложения, которые «любят» и используют многопоточность: архиваторы , плееры и кодировщики видео , антивирусы , программы дефрагментаторы , графические редакторы , браузеры , Flash .

Так же, к «любителям» многопоточности, можно отнести такие операционные системы как Windows 7 и Windows Vista , а так же многие ОС , основанные на ядре Linux , которые работают заметно быстрее при наличии многоядерного процессора.

Большинству игр , бывает вполне достаточно 2-х ядерного процессора на высокой частоте. Сейчас однако, выходит всё больше игр «заточенных» под многопоточность. Взять хотя бы такие SandBox игры, как GTA 4 или Prototype , в которые на 2-х ядерном процессоре с частотой ниже 2,6 Ггц – комфортно себя не чувствуешь, фреймрейт проваливается ниже 30 кадров в секунду. Хотя в данном случае, скорее всего причиной таких казусов является «слабая» оптимизация игр, недостаток времени или «не прямые» руки тех, кто переносил игры с консолей на PC .

При покупке нового процессора для игр, сейчас стоит обращать внимание на процессоры с 4-мя и более ядрами. Но всё же, не стоит пренебрегать 2-х ядерными процессорами из «верхней категории». В некоторых играх, данные процессоры чувствуют себя порой лучше, чем некоторые многоядерные.

Кэш память процессора.

– это выделенная область кристалла процессора, в которой обрабатываются и хранятся промежуточные данные между процессорными ядрами, оперативной памятью и другими шинами.

Она работает на очень высокой тактовой частоте (обычно на частоте самого процессора), имеет очень высокую пропускную способность и процессорные ядра работают с ней напрямую (L1 ).

Из-за её нехватки , процессор может простаивать в трудоёмких задачах, ожидая пока в кэш поступят новые данные для обработки. Так же кэш-память служит для записи часто повторяющихся данных, которые при необходимости могут быть быстро восстановлены без лишних вычислений, не заставляя процессор тратить время на них снова.

Производительности, так же добавляет факт, если кэш память объединённая, и все ядра равноправно могут использовать данные из неё. Это даёт дополнительные возможности для многопоточной оптимизации.

Такой приём, сейчас используется для кэш памяти 3-го уровня . У процессоров Intel существовали процессоры с объединённой кэш памятью 2-го уровня (C2D E 7*** , E 8*** ), благодаря которым и появился данный способ увеличить многопоточную производительность.

При разгоне процессора, кэш память может стать слабым местом, не давая разогнать процессор больше, чем её предельная частота функционирования без ошибок. Однако плюсом является то, что она будет работать на той же частоте, что и разогнанный процессор.

В общем, чем больше кэш памяти, тем быстрее процессор. В каких именно приложениях?

Во всех приложениях, где используется множество числовых данных с плавающей запятой, инструкций и потоков, кэш память активно используется. Кэш память очень любят архиваторы , кодировщики видео , антивирусы и графические редакторы и т.д.

Благоприятно к большому количеству кэш-памяти относятся игры . Особенно стратегии, авто-симуляторы, RPG, SandBox и все игры, где есть много мелких деталей, частиц, элементов геометрии, потоков информации и физических эффектов.

Кэш память играет очень немалую роль в раскрытии потенциала систем с 2-мя и более видеокартами. Ведь какая то доля нагрузки, ложится на взаимодействие ядер процессора как между собой, так и для работы с потоками нескольких видео-чипов. Именно в этом случае важна организация кэш — памяти, и очень полезна кэш память 3-го уровня большого объёма.

Кэш память, всегда оснащается защитой от возможных ошибок (ECC ), при обнаружении которых, ведётся их исправление. Это очень важно, ведь маленькая ошибочка в кэш памяти, при обработке может превратиться в гигантскую, сплошную ошибку, от которой «ляжет» вся система.

Фирменные технологии.

(гипер-поточность, HT )–

впервые технология была применена в процессорах Pentium 4 , но работала не всегда корректно и зачастую больше тормозила процессор, чем ускоряла. Причиной был слишком длинный конвейер и не доведённая до ума система предсказания ветвлений. Применяется компанией Intel , аналогов технологии пока нет, если не считать аналогом то? что реализовали инженеры компании AMD в архитектуре Bulldozer .

Принцип системы таков, что на каждое физическое ядро, создаётся по два вычислительных потока , вместо одного. То есть, если у вас 4-х ядерный процессор с HT (Core i 7 ), то виртуальных потоков у вас 8 .

Прирост производительности достигается за счёт того, что в конвейер могут поступать данные уже в его середине, а не обязательно сначала. Если какие то блоки процессора, способные выполнить это действие простаивают, они получают задачу к выполнению. Прирост производительности не такой как у настоящих физических ядер, но сопоставимый(~50-75%, в зависимости от рода приложения). Довольно редко бывает, что в некоторых приложениях, HT отрицательно влияет на производительность. Связано это с плохой оптимизацией приложений под данную технологию, невозможность понять, что присутствуют потоки «виртуальные» и отсутствие ограничителей для нагрузки потоков равномерно.

Turbo Boost – очень полезная технология, которая увеличивает частоту функционирования наиболее используемых ядер процессора, в зависимости от уровня их загруженности. Очень полезна тогда, когда приложение не умеет использовать все 4 ядра, и загружает только одно или два, при этом их частота работы повышается, что частично компенсирует производительность. Аналогом данной технологии у компании AMD , является технология Turbo Core .

, 3 dnow ! инструкции . Предназначены для ускорения работы процессора в мультимедиа вычислениях (видео, музыка, 2D/3D графика и т.д.), а так же ускоряют работу таких программ как архиваторы, программы для работы с изображениями и видео (при поддержке инструкций данными программами).

3dnow ! – довольно старая технология AMD , которая содержит дополнительные инструкции по обработке мультимедиа контента, помимо SSE первой версии .

*А именно возможность потоковой обработки вещественных чисел одинарной точности.

Наличие самой новой версии – является большим плюсом, процессор начинает более эффективно выполнять определённые задачи при должной оптимизации ПО. Процессоры AMD носят похожие названия, но немного другие.

* Пример — SSE 4.1(Intel) — SSE 4A(AMD).

К тому же, данные наборы инструкций не идентичны. Это аналоги, в которых есть небольшие отличия.

Cool’n’Quiet, SpeedStep, CoolCore, Enchanced Half State(C1E) и т . д .

Данные технологии, при низкой нагрузке уменьшают частоту процессора, посредством уменьшения множителя и напряжения на ядре, отключения части КЭШа и т.д. Это позволяет процессору гораздо меньше греться и потреблять меньше энергии, меньше шуметь. Если понадобится мощность, то процессор вернётся в обычное состояние за доли секунды. На стандартных настройках Bios практически всегда включены, при желании их можно отключить, для уменьшения возможных «фризов» при переключении в 3D играх.

Некоторые из этих технологий, управляют скоростью вращения вентиляторов в системе. К примеру, если процессор не нуждается в усиленном отводе тепла и не нагружен, скорость вентилятора процессора уменьшается (AMD Cool’n’Quiet, Intel Speed Step ).

Intel Virtualization Technology и AMD Virtualization .

Эти аппаратные технологии позволяют с помощью специальных программ запускать несколько операционных систем сразу, без какой либо сильной потери в производительности. Так же, её используют для правильной работы серверов, ведь зачастую, на них установлена далеко не одна ОС.

Execute Disable Bit и No eXecute Bit технология, призванная защитить компьютер от вирусных атак и программных ошибок, которые могут вызвать крах системы посредством переполнения буфера .

Intel 64 , AMD 64 , EM 64 T – данная технология позволяет процессору работать как в ОС с 32-х битной архитектурой, так и в ОС с 64-х битной. Система 64 bit – с точки зрения выгоды, для рядового пользователя отличается тем, что в данной системе можно использовать более 3.25Гб оперативной памяти. В 32-х битных системах, использовать бо льший объём оперативной памяти не представляется возможным, из-за ограниченного объёма адресуемой памяти* .

Большинство приложений с 32-х bit архитектурой, можно запустить на системе с 64-х битной ОС.

* Что же поделать, если в далёком 1985 году, никто и подумать не мог о таких гигантских, по меркам того времени, объёмах оперативной памяти.

Дополнительно.

Пара слов о .

На этот пункт стоит обратить пристальное внимание. Чем тоньше техпроцесс, тем меньше процессор потребляет энергии и как следствие — меньше греется. И кроме всего прочего — имеет более высокий запас прочности для разгона.

Чем более тонкий техпроцесс, тем больше можно «завернуть» в чип (и не только) и увеличить возможности процессора. Тепловыделение и энергопотребление при этом тоже уменьшается пропорционально, благодаря меньшим потерям по току и уменьшению площади ядра. Можно заметить тенденцию, что с каждым новым поколением той же архитектуры на новом техпроцессе, растёт и энергопотребление, но это не так. Просто производители идут в сторону ещё большей производительности и перешагивают за черту тепловыделения прошлого поколения процессоров из-за увеличения числа транзисторов, которое не пропорционально уменьшению техпроцесса.

Встроенное в процессор .

Если вам не нужно встроенное видео ядро, то не стоит покупать процессор с ним. Вы получите только худший отвод тепла, лишний нагрев (не всегда), худший разгонный потенциал (не всегда), и переплаченные деньги.

К тому же те ядра, что встроены в процессор, годятся только для загрузки ОС, интернет сёрфинга и просмотра видео (и то не любого качества).

Тенденции на рынке все же меняются и возможность купить производительный процессор от Intel без видео ядра выпадает всё реже. Политика принудительного навязывание встроенного видео ядра, появилась с процессоров Intel под кодовым названием Sandy Bridge , основное новшество которых и было встроенное ядро на том же техпроцессе. Видео-ядро, находится совместно с процессором на одном кристалле , и не такое простое как в предыдущих поколениях процессоров Intel . Для тех кто его не использует, есть минусы в виде некоторой переплаты за процессор, смещённость источника нагрева относительно центра тепло — распределительной крышки. Однако есть и плюсы. Отключенное видео ядро, можно использовать для очень быстрой кодировки видео с помощью технологии Quick Sync вкупе со специальным, поддерживающим данную технологию ПО. В будущем, Intel обещает расширить горизонты использования встроенного видео ядра для параллельных вычислений.

Сокеты для процессоров. Сроки жизни платформ .


Intel ведёт грубую политику для своих платформ. Срок жизни каждой (срок начала и конца продаж процессоров для неё), обычно не превышает 1.5 — 2 года. К тому же, у компании есть несколько параллельно развивающихся платформ.

Компания AMD , ведёт противоположную политику совместимости. На её платформу на AM 3 , будут подходить все процессоры будущих поколений, поддерживающие DDR3 . Даже при выходе платформы на AM 3+ и более поздних, отдельно будут выпускаться либо новые процессоры под AM 3 , либо новые процессоры будут совместимы со старыми материнскими платами, и можно будет сделать безболезненный для кошелька апгрейд, поменяв только процессор (без смены мат.платы, ОЗУ и т.д.) и прошив материнской платы. Единственные нюансы несовместимости могут быть при смене типа , так как будет требоваться другой контроллёр памяти, встроенный в процессор. Так что совместимость ограниченная и поддерживается далеко не всеми материнскими платами. Но в целом, экономному пользователю или тем, кто не привык менять платформу полностью каждые 2 года — выбор производителя процессора понятен — это AMD .

Охлаждение процессора.

В стандартной комплектации, с процессором идёт BOX -овый кулер, который будет просто справляться со своей задачей. Представляет он из себя кусок алюминия с не очень высокой площадью рассеивания. Эффективные кулеры на тепловых трубках и закреплёнными на них пластинами, имеют конструкцию, предназначенную для высокоэффективного рассеивания тепла. Если вы не хотите слышать лишний шум от работы вентилятора, то вам стоит приобрести альтернативный, более эффективный кулер с тепловыми трубками, либо систему жидкостного охлаждения замкнутого или не замкнутого типа. Такие системы охлаждения, дополнительно дадут возможность разгона для процессора.

Заключение.

Все важные аспекты, влияющие на производительность и эксплуатационные характеристики процессора, были рассмотрены. Повторим, на что следует обращать внимание:

  • Выбрать производителя
  • Архитектура процессора
  • Техпроцесс
  • Частота процессора
  • Количество ядер процессора
  • Размер и тип кэш-памяти процессора
  • Поддержка технологий и инструкций
  • Качественное охлаждение

Надеемся, данный материал поможет вам разобраться и определиться в выборе соответствующего вашим ожиданиям процессора.

Всем привет! Многие неопытные пользователи, которые хотят собрать себе игровой компьютер, делают излишнюю ставку только на одну комплектующую – видеокарту. И, казалось бы, подход вполне логичный, ведь компьютер требуется, чтобы в игры играть, а значит, самое главное, на что следует смотреть при покупке, это графический ускоритель. Однако такой подход сам по себе является ошибочным, и маленький кусок кремния, именуемый процессором, часто остается без внимания. Хотя его значение в игровой машине очень велико. В сегодняшней статье мы поговорим, как вы догадались, о процессорах и их предназначении в игровых нагрузках.

Подбирая железо в игровую тачку, у пользователя не возникнет никаких проблем с выбором видеокарты, здесь все предельно просто. Чем больше у вас денег, тем лучше вы сможете приобрести графический ускоритель. Более дорогая видюха гарантированно даст вам большую производительность, а значит и большее количество кадров в любимой игре. С выбором процессора всё не так просто и очевидно. Для того, чтобы знать за что именно вы отдаете свои золотые монеты, когда покупаете кусок кремния, необходимо понимать, за что именно отвечает ЦПУ в рамках игровой нагрузки. И если опять же вернуться к графическим адаптерам, то каждый второй юзер знает, что видеокарта отвечает за качество визуальной составляющей любого игрового проекта. А за что же отвечает мой Pentium, спросите вы? Давайте разбираться.

Если говорить в общих чертах, то сердце вашей системы отвечает за различные математические расчеты, скорость выполнения которых напрямую зависит от его производительности. Прирост производительности достигается путем увеличения тактовой частоты или же путем увеличения количества ядер и потоков. У дорогих процессоров, как известно высокая герцовка и, как правило, все они являются представителями многоядерного семейства, а значит, справляются с поставленной перед ними задачей намного быстрее урезанных моделей. Для того, чтобы лучше понимать, что именно дает пользователю высокопроизводительный камень, приведу несколько примеров.

Обработка пользовательских команд

С помощью посредника в лице материнской платы, процессор доставляет отсортированные по типу данные до различных комплектующих и от них же принимает определенную информацию, а затем обрабатывает её. Получается круговорот информации внутри системы, в центре которой находится тот самый кремниевый кусок. Качество и скорость любых взаимодействий пользователя с компьютером посредством устройств ввода данных зависят напрямую от производительности ЦПУ. То есть, за возможность управлять в игре персонажем с помощью нажатий на клавиатуру и передвижений мышью, можете сказать спасибо в первую очередь ЦПУ. Каждое нажатие на клавишу отправляет процессору информацию, он же ее обрабатывает и в игре происходит определенное действие. Так вот между нажатием и результатом вашего нажатия проходит n-ое количество времени, которое требуется процессору на обработку. Чем процессор производительнее, тем быстрее произойдет обработка сигнала, а соответственно задержка отклика будет минимальной. Вы можете наблюдать задержку отклика, если запустите тяжелое игровое приложение на старом процессоре. Поворачивая мышкой в игре, вы увидите, что поворот камеры произойдет через одну-две секунды после того, как вы подвинули грызуна. Это говорит о недостаточной мощности ЦПУ. На количество кадров в секунду данное событие никак не влияет, однако, на комфортность геймплея еще как. Безусловно, если вы не искушенный дорогими железяками пользователь, то можно поиграть и так, но на впечатление от игры напрямую влияет еще несколько зависящих от процессора факторов.

Построение окружающей среды

Для того, чтобы разобраться за что отвечает процессор в игре, придется немного затронуть тему 3D моделирования. Почти все, что вы видите в игре, является моделями. Дома, персонажи, машины, оружие, деревья и так далее – все это отдельные модели. За их детализацию отвечает графический ускоритель, а вот за их построение и расстановку в пространстве относительно друг друга – процессор. То есть получается, что первым в работу включается именно ЦПУ, он собирает все необходимые данные и отправляет их видеокарте, чтобы она занялась отрисовкой и детализацией каждого объекта. Если говорить более простым языком, то диалог между двумя комплектующими будет выглядеть следующим образом:

Процессор: "Эй, пссс, подруга, я тут построил каркас нашего совместного проекта, но вот не задача, выглядит все как-то не очень, ты не могла бы мне помочь?”

Ну и видеокарта, как представительница женского рода, который очень любит красоту, не может отказать своему другу-технарю и отвечает ему: "Да, конечно, я сделаю из этого неотесанного куска камня конфетку”.

В случае если уровень вашего кусочка кремния будет сильно отставать от минимальных системных требований игры, то в игре вы будет наблюдать не полную загрузку объектов и в таком случае диалог между комплектующими уже будет выглядеть следующим образом:

Видеокарта: "Прием, ты там живой? Я уже закончила свою работу, другие указания имеются?”

На что процессор отвечает: "Подожди, я тут немного задумался и не могу понять земля должна находиться под танком или над ним…”

В таком случае и происходят фризы и микростаттеры, когда картинка зависает ненадолго, а процессор в это время напрягает все свои извилины, чтобы не ошибиться с подсчетами. Поэтому в современных играх, где насчитывается огромное количество моделей и всевозможных взаимодействий между ними, наличие высокопроизводительного процессора – обязательно.

  • P.S. На одном из скриншотов выше, вы можете увидеть разницу в качестве модели с разным количеством используемых полигонов. Чем их больше, тем качественнее получится объект. Безусловно, качество может зависеть и от других факторов. Например, от текстуры, которая наносится поверх полигонов, от типа сглаживания и так далее. Как я уже написал выше, построением объектов часто занимается процессор, однако некоторые его функции способен брать на себя и графический акселератор. Зависит это напрямую от движка используемого разработчиками при создании, в котором и заложены подобные алгоритмы. Таким образом, это позволяет разрабам снизить или повысить системные требования для одной из комплектующих. Поэтому далеко не всегда в построении объектов будет задействован ЦПУ, видеокарта, как преданная подруга способна взять на себя часть его обязанностей. Возможно, в далеком будущем мы увидим одну объединенную железку, которая будет представлять из себя GPU+CPU сразу. Сегодня можно уже часто наблюдать процесс развития возможностей графических ускорителей, которые способны вместо процессора заниматься рендером в определенных графических программах и прямыми трансляциями в утилитах для стримов. Хотя раньше подобного рода задачи были исключительно прерогативой процессора.

Математические алгоритмы

В любом трехмерном игровом приложении очень многие вещи работают на определенных заложенных разработчиками алгоритмах, просчётами которых занимается процессор. Самый банальный и наглядный пример практически в любой игре это отбрасываемые объектами тени. Для самого простого появления тени, скажем от дерева, процессору потребуется рассчитать расстояние от источника света до объекта, отбрасывающего тень, угол падения световых лучей, динамическое изменение объектов в пространстве, взаимодействие с другими объектами окружения, интенсивность освещения и многое многое другое. И это всего лишь для какой-то никчемной тени, на которую игрок даже не обращает внимания. Теперь представьте, сколько объектов может одновременно находится в поле зрения игрока, взаимодействуя при этом между собой. И всеми этим подсчетами должен заняться ЦПУ. И подобного рода алгоритмов в любой игре насчитывается огромное множество, которые касаются практически любого элемента геймплея. Скажем, ваш персонаж стоит на месте и бездействует. Спустя определенное время, при соблюдении огромного количества условий, ваш персонаж будет говорить одну из нескольких фраз, которая будет выбрана исходя из опять же таки выполненных условий алгоритма. И чем разнообразнее разработчики пытаются сделать свое детище, тем выше будут системные требования к железу, а в частности к процессору. Визуальную составляющую в любой игре довольно просто улучшить, просто создав более детализированные модели в паре с качественным и реалистичным освещением. Тоже самое касается и даунгрейда, когда специально ухудшают внешний вид. Такое часто можно наблюдать с портированными проектами на консоли, ведь они не отличаются высокопроизводительной начинкой. А вот для того, чтобы игра выглядела, как можно более реалистично, если можно так выразиться, создателям приложений приходится засовывать в свои проекты огромное множество математических формул. Для того, чтобы вы понимали насколько сильно процессор задействован в любой игре, приведу еще один утомительный пример. В современных играх часто встречаются так называемые NPC. NPC – это персонажи, которые не находятся под управлением игрока, и которые запрограммированы на определенные действия при появлении определенных раздражителей.

Вот на скриншоте выше NPC в виде эльфа с луком ведет ожесточенную борьбу с другим NPC в виде самого обыкновенного волка. Эльф при взаимодействии с любым враждебным NPC встает на место и начинает стрелять из лука. Если вражина приближается очень близко, то он достает кинжал и сражается в ближнем бою. При этом волк пытается сблизиться с длинноухим, но если поблизости оказывается игрок, то он в первую очередь будет атаковать ведьмака. А если ведьмак будет убегать от острозубого хищника, то волчара кинется на испуганного лучника. То есть получается, что в основу любого взаимодействия игрока с геймплейной механикой, заложено очень много "если” и "то”. И всевозможными вариантами развития событий занимается тоже процессор. Добавляйте в эту схему вышеупомянутые математические расчеты объектов окружения, и вы получите неимоверную нагрузку в виде тысячи параллельно решаемых уравнений. Получается, что чем больше в игре возможностей, тем мощнее требуется ЦПУ.

Расчеты физики

Основываясь на вышеупомянутых математических расчетах в современных играх, присутствует огромное количество объектов, которые подвержены физике игрового движка. Безусловно, она отличается от реальной физики по той простой причине, что нынешние процессоры не обладают достаточной производительностью для столь сложных расчетов. Посудите сами, когда на автомобиле в игре вы падаете с обрыва, вы летите вниз с определенной скоростью и по определенной траектории. Сталкиваясь с землей, конструкция машины изменяется определенным образом и после ДТП авто продолжает движение без усилий игрока согласно инерции. Все это и есть физика в игре. И чем более она реалистична, тем, как вы уже догадались, требуется более производительный камень. В реальной жизни исход подобного происшествия зависит от огромного количества факторов: скорость машины до слёта вниз, ускорение свободного падения, высота обрыва, материалы автомобиля, плотность поверхности и многое многое другое. На самом деле подобных переменных в условиях такого события просто не сосчитать, а потому воспроизвести такое сложное с точки зрения физики происшествие в игре невозможно. Вы просто представьте, какие усилия должны быть приложены для создания таких алгоритмов, и какая вычислительная мощность потребуется, чтобы всё это должным образом рассчитать. Поэтому в играх нашего времени существует очень сильно упрощенная система физических расчетов.

P.S. В августе 2009 года англоязычный журнал Game Developer, посвящённый разработке компьютерных игр, опубликовал статью о современных игровых движках и их использовании. Согласно данным журнала, наиболее популярным среди разработчиков является движок nVidia PhysX, который занимает 26,8% рынка. На втором месте находится Havok, который занимает 22,7% рынка. Третье место принадлежит движку Bullet Physics Library (10,3%), а четвёртое - Open Dynamics Engine (4,1%).

Как и в случае с классическими математическими расчетами, процессор, будучи альфонсом, не брезгует помощью видеокарты и здесь, перекладывая на неё часть своих обязанностей. Например вышеупомянутый знаменитый движок от компании Nvidia – PhysX, адаптирован для ускорения физических расчетов на графических чипах с архитектурой CUDA. Но это не значит, что ЦПУ менее важен, как вы могли понять, ему реально есть чем заняться, он у нас парень вообще разносторонний и многозадачный.

Вообще говоря, про физику в играх, следует понимать, что чем больше в игре объектов, которые поддаются физическим законам движка, тем, как вы уже догадались, производительнее потребуется ЦПУ. Представьте, насколько сильно выросла бы нагрузка на железо, если бы все внутриигровые объекты имели поведенческие особенности согласно физике. Взять, например ту же растительность в любой фантастической игре с открытым миром, где много красивых пейзажей природы. Модельки травы зачастую не имеют вообще никаких способностей взаимодействия с окружающим миром, в основном просто звуковое сопровождение при контакте с игроком прописанное в скрипте. Если в игре присутствует динамическая смена погоды, то трава всё равно будет вести себя одинаково, просто якобы покачиваясь от ветра, однако это не результат взаимодействия с погодными условиями, а просто запрограммированное поведение модели. И кстати именно из-за нехватки вычислительной мощности железа, мы до сих пор видим низкодетализированные 2D модели колышущихся кустарников. Та же самая история и с прическами главных персонажей, которые выглядят относительно общей картины значительно хуже.

Откуда пошел миф про то, что играм не требуется производительный процессор?

Ноги у данного мифа появились на заре игростроения, когда игры были очень простыми и разработчики уделяли больше внимания визуальной составляющей с помощью повышенной детализации объектов. Темпы развития производительности процессоров были значительно ниже, чем у видеокарт. Миры были относительно пустые, в них было очень мало NPC, которые дай бог, имели пару реплик и оживали только при взаимодействии игрока с ними. Таких теней как сейчас не было, были, по сути, затемненные статичные текстуры. Про физику я вообще молчу, ни о какой разрушаемости не могло идти и речи. И поэтому многие стали думать, что процессор это второсортная комплектующая для игровых нагрузок, а вот высокопроизводительный графический акселератор – просто must have. Однако в современном мире огромное количество проектов движется в сторону реализма. Под реализмом причем я подразумеваю не только красивую высокодетализированную оболочку. Я говорю именно про различные мелочи, которые делают игру разнообразнее. Количество реплик у персонажей, их возможные взаимодействия между собой, рандомно генерируемые второстепенные объекты и события, реалистичные поведенческие особенности NPC и многое другое – все это ложится на плечи ЦПУ, который с каждым годом требуется все мощнее и мощнее. Ведь если наложить красивую оболочку на однобокий и простой мир, то не получится создать реалистичную вселенную.

Почему процессор важнее видеокарты?

Ответ на этот вопрос кроется в возможностях игровых настроек и кастомизаций. Игроку, как правило, предлагается широкий спектр управления графической составляющей. Тут вам и общее качество текстур, теней, рельефа, освещения и так далее. И все они в основном влияют на выработку видеокарты. Возможность снижения нагрузки на ЦПУ зачастую попросту недоступна. Именно поэтому, если у вас имеется графический ускоритель не соответствующий рекомендованным системным требованиям, то вы можете укатать картинку до того уровня, на котором значение кадров в секунду приблизиться к комфортному для вас восприятию. Но если вы еще имеете и слабый процессор, тот тут вам практически гарантирован дискомфорт в игре из-за регулярных фризов. Поэтому я рекомендую брать процессор с небольшим запасом и делать упор в связке CPU+GPU именно на первую комплектующую. Да, в некоторых проектах, существуют такие возможности, как уменьшение количества окружающих вас NPC или снижение дальности прорисовки объектов, но такие настройки встречаются крайне редко, а потому процессор, на мой взгляд, является более капризной железкой, нежели видеокарта. Более того, нагрузка на железо во время игры не является статичной. В особо динамических сценах со множеством различных частиц и эффектов, вы можете столкнуться со 100% нагрузкой на процессор, что негативным образом скажется опять же таки на ваше восприятие. И количество ФПС при этом может быть заоблачным, но это не спасет от фризов, ведь ЦПУ выжимает из себя при этом все соки.

Надеюсь, мне удалось развеять тот миф, что процессор абсолютно не важен для игр. Как видите, он занят огромным количеством работы в то время пока вы получаете удовольствие и если вы хотите получить от игры максимум впечатления во время игрового процесса, то не стоит недооценивать этот маленький, но важный кусочек кремния!

Процессор – это основной вычислительный компонент, который сильно влияет на производительность компьютера. Но на сколько производительность в играх зависит от процессора? Стоит ли менять процессор для повышения производительности в играх? Какой прирост это даст? На эти вопросы мы и попытаемся найти ответ в этой статье.

1. Что менять видеокарту или процессор

Не так давно я опять столкнулся с нехваткой производительности компьютера и стало ясно, что настало время очередного апгрейда. На тот момент моя конфигурация была следующей:

  • Phenom II X4 945 (3 ГГц)
  • 8 Гб DDR2 800 МГц
  • GTX 660 2 Гб

В целом производительность компьютера меня вполне устраивала, система работала довольно шустро, большинство игр шли на высоких или средне/высоких настройках графики, а видео я монтировал не так часто, так что 15-30 минут рендеринга меня не напрягали.

Первые проблемы возникли еще в игре World of Tanks, когда смена настроек графики с высоких на средние не давала ожидаемого прироста производительности. Частота кадров периодически просаживалась с 60 до 40 FPS. Стало ясно, что производительность упирается в процессор. Тогда было решено до 3.6 ГГц, что решило проблемы в WoT.

Но шло время, выходили новые тяжелые игры, а с WoT я пересел на более требовательную к системным ресурсам (Армата). Ситуация повторилась и стал вопрос что менять – видеокарту или процессор. Смысла менять GTX 660 на 1060 не было, нужно было брать хотя бы GTX 1070. Но такую видеокарту старичок Phenom точно не потянул бы. Да и при смене настроек в Армате было ясно, что производительность опять уперлась в процессор. Поэтому было решено заменить сначала процессор с переходом на более производительную в играх платформу Intel.

Замена процессора тянула за собой замену материнской платы и оперативной памяти. Но другого выхода не было, кроме того была надежда на то, что более мощный процессор позволит полнее раскрыться старой видеокарте в процессорозависимых играх.

2. Выбор процессора

Процессоров Ryzen на тот момент еще не было, их выход только ожидался. Для того, чтобы полноценно оценить их, нужно было дождаться их выхода и массового тестирования для выявления сильных и слабых сторон.

Кроме того, уже было известно, что цена на момент их выхода будет довольно высокой и нужно было ждать еще около полугода пока цены на них станут более адекватными. Желания столько ждать не было, ровно как и спешно переходить на еще сырую платформу AM4. А, учитывая вечные ляпы AMD, это было еще и рискованно.

Поэтому процессоры Ryzen не рассматривались и предпочтение отдавалось уже проверенной, отточенной и хорошо себя зарекомендовавшей платформе Intel на сокете 1151. И, как показала практика, не зря, так как процессоры Ryzen оказались хуже в играх, а в других задачах производительности мне и так было достаточно.

Сначала выбор был между процессорами Core i5:

  • Core i5-6600
  • Core i5-7600
  • Core i5-6600K
  • Core i5-7600K

Для игрового компьютера среднего класса i5-6600 был вариантом минимум. Но на перспективу замены видеокарты хотелось иметь какой-то запас. Core i5-7600 отличался не сильно, поэтому изначально планировалось приобрести Core i5-6600K или Core i5-7600K с возможностью разгона до стабильных 4.4 ГГц.

Но, ознакомившись с результатами тестов в современных играх, где загрузка этих процессоров приближалась к 90%, было ясно, что в перспективе их может немного не хватить. А хотелось иметь хорошую платформу с запасом на долго, так как прошли те времена, когда можно было делать апгрейд ПК каждый год

Поэтому я начал присматриваться к процессорам Core i7:

  • Core i7-6700
  • Core i7-7700
  • Core i7-6700K
  • Core i7-7700K

В современных играх они загружаются еще не на полную, а где-то на 60-70%. Но, у Core i7-6700 базовая частота всего 3.4 ГГц, а у Core i7-7700 не многим больше – 3.6 ГГц.

По результатам тестов в современных играх с топовыми видеокартами наибольший прирост производительности наблюдается на отметке 4 ГГц. Дальше он уже не столь значительный, иногда практически незаметный.

Несмотря на то, что процессоры i5 и i7 оснащены технологией авторазгона (), рассчитывать на нее особо не стоит, так как в играх, где задействованы все ядра, прирост будет незначительный (всего 100-200 МГц).

Таким образом, процессоры Core i7-6700K (4 ГГц) и i7-7700K (4.2 ГГц) являются более оптимальными, а учитывая возможность разгона до стабильных 4.4 ГГц, еще и значительно более перспективными чем i7-6700 (3.4 ГГц) и i7-7700 (3.6 ГГц), так как разница в частоте уже составит 800-1000 МГц!

На момент апгрейда процессоры Intel 7-го поколения (Core i7-7xxx) только появились и стоили ощутимо дороже процессоров 6-го поколения (Core i7-6xxx), цены на которые уже начали снижаться. При этом в новом поколении обновили только встроенную графика, которая для игр не нужна. А возможности разгона у них практически одинаковые.

Кроме того, материнки на новых чипсетах тоже стоили дороже (хотя можно поставить процессор на более старый чипсет, это может быть сопряжено с некоторыми проблемами).

Поэтому было решено брать Core i7-6700K с базовой частотой 4 ГГц и возможностью разгона до стабильных 4.4 ГГц в будущем.

3. Выбор материнской платы и памяти

Я, как большинство энтузиастов и технических экспертов, отдаю предпочтение качественным и стабильным материнкам от ASUS. Для процессора Core i7-6700K с возможностью разгона оптимальным вариантом являются материнские платы на чипсете Z170. Кроме того, хотелось иметь более качественную встроенную звуковую карту. Поэтому было решено взять самую недорогую игровую материнку от ASUS на чипсете Z170 – .

Память, с учетом поддержки материнкой частоты модулей до 3400 МГц, хотелось также побыстрее. Для современного игрового ПК оптимальным вариантом является комплект памяти DDR4 2×8 Гб. Оставалось найти оптимальный по соотношению цена/частота комплект.

Изначально выбор пал на AMD Radeon R7 (2666 МГц), так как цена была весьма заманчива. Но, на момент заказа, ее не оказалось на складе. Пришлось выбирать между гораздо более дорогой G.Skill RipjawsV (3000 МГц) и чуть менее дорогой Team T-Force Dark (2666 МГц).

Это был сложный выбор, так как память хотелось побыстрее, а средства были ограничены. По результатам тестов в современных играх (которые я изучил), разница в производительности между памятью с частотой 2133 МГц и 3000 МГц составляла 3-13% и в среднем 6%. Это не так много, но хотелось получить максимум.

Но дело в том, что быстрая память делается путем заводского разгона более медленных чипов. Память G.Skill RipjawsV (3000 МГц) не исключение и, для достижения такой частоты, напряжение питания у нее составляет 1.35 В. Кроме того, процессоры тяжело переваривают память со слишком высокой частотой и уже на частоте 3000 МГц система может работать не стабильно. Ну и повышенное напряжение питания приводит к более быстрому износу (деградации) как чипов памяти, так и контроллера процессора (об этом официально заявляла компания Intel).

В тоже время память Team T-Force Dark (2666 МГц) работает при напряжении 1.2 В и, по заявлениям производителя, допускает повышение напряжения до 1.4 В, что при желании позволит разогнать ее вручную. Взвесив все за и против, выбор был сделан в пользу памяти со стандартным напряжением 1.2 В.

4. Тесты производительности в играх

Перед сменой платформы я сделал тесты производительности старой системы в некоторых играх. После смены платформы те же тесты были произведены повторно.

Тесты производились на чистой системе Windows 7 с одной и той же видеокартой (GTX 660) на высоких настройках графики, так как целью замены процессора было повышение производительности без снижения качества изображения.

Для достижения более точных результатов в тестах использовались только игры со встроенным бенчмарком. В качестве исключения тест производительности в танковом онлайн шутере Armored Warfare производился путем записи реплея и дальнейшего его проигрывания со снятием показателей с помощью Fraps.

Высокие настройки графики.

Тест на Phenom X4 (@3.6 ГГц).

По результатам теста видно, что средний FPS изменился незначительно (с 36 до 38). Значит производительность в данной игре упирается в видеокарту. Тем не менее, минимальные просадки FPS во всех тестах значительно уменьшились (с 11-12 до 21-26), а значит играть все равно будет немного комфортнее.

В надежде на повышение производительности с DirectX 12 позже я сделал тест в Windows 10.

Но результаты оказались даже хуже.

Batman: Arkham Knight

Высокие настройки графики.

Тест на Phenom X4 (@3.6 ГГц).

Тест на Core i7-6700K (4.0 ГГц).

Игра очень требовательна как к видеокарте, так и к процессору. Из тестов видно, что замена процессора привела к существенному росту среднего FPS (с 14 до 23), и уменьшению минимальных просадок (с 0 до 15), максимальное значение также выросло (с 27 до 37). Тем не менее, эти показатели не позволяют комфортно играть, поэтому я решил провести тесты со средними настройками и отключил различные эффекты.

Средние настройки графики.

Тест на Phenom X4 (@3.6 ГГц).

Тест на Core i7-6700K (4.0 ГГц).

На средних настройках средний FPS также немного вырос (с 37 до 44), и существенно снизились просадки (с 22 до 35), перекрыв минимально допустимый для комфортной игры порог в 30 FPS. Разрыв в максимальном значении также сохранился (с 50 до 64). В результате смены процессора играть стало вполне комфортно.

Переход на Windows 10 абсолютно ничего не изменил.

Deus Ex: Mankind Divided

Высокие настройки графики.

Тест на Phenom X4 (@3.6 ГГц).

Тест на Core i7-6700K (4.0 ГГц).

Результатом замены процессора стало лишь снижение просадок FPS (с 13 до 18). Тесты со средними настройками, я к сожалению забыл провести Но провел тест на DirectX 12.

В результате лишь просел минимальный FPS.

Armored Warfare : Проект Армата

Я частенько играю в эту игру и она стала одной из основных причин обновления компьютера. На высоких настройках игра выдавала 40-60 FPS с редкими, но неприятными просадками до 20-30.

Снижение настроек до средних устраняло серьезные просадки, но средний FPS оставался почти таким же, что является косвенным признаком нехватки производительности процессора.

Был записан реплей и произведены тесты в режиме воспроизведения с помощью FRAPS на высоких настройках.

Их результаты я свел в табличку.

Процессор FPS (мин ) FPS (сред ) FPS (макс )
Phenom X4 (@3.6 ГГц) 28 51 63
Core i7-6700K (4.0 ГГц) 57 69 80

Замена процессора полностью исключила критичные просадки FPS и серьезно повысила среднюю частоту кадров. Это позволило включить вертикальную синхронизацию, сделав картинку более плавной и приятной. При этом игра выдает стабильные 60 FPS без просадок и играть очень комфортно.

Другие игры

Я не проводил тесты, но в целом похожая картина наблюдается в большинстве онлайн и процессорозависимых игр. Процессор серьезно влияет на FPS в таких онлайн играх как Battlefield 1 и Overwatch. А также в играх с открытым миром типа GTA 5 и Watch Dogs.

Сам я ради эксперимента устанавливал GTA 5 на старый ПК с процессором Phenom и новый с Core i7. Если раньше при высоких настройках FPS держался в пределах 40-50, то теперь стабильно держится выше отметки 60 практически без просадок и часто доходит до 70-80. Эти изменения заметны невооруженным глазом, а вооруженный просто гасит всех подряд

5. Тест производительности в рендеринге

Я не много занимаюсь монтажом видео и провел всего один простейший тест. Отрендерил Full HD видео длиной 17:22 и объемом 2.44 Гб в меньший битрейт в программе Camtasia, которой я пользуюсь. В результате получился файл объемом 181 Мб. Процессоры справились с задачей за следующее время.

Процессор Время
Phenom X4 (@3.6 ГГц) 16:34
Core i7-6700K (4.0 ГГц) 3:56

Само собой, в рендеринге была задействована видеокарта (GTX 660), ибо я ума не приложу кому придет в голову проводить рендеринг без видеокарты, так как это занимает в 5-10 раз больше времени. Кроме того, плавность и скорость воспроизведения эффектов при монтаже также очень сильно зависит от видеокарты.

Тем не менее, зависимость от процессора никто не отменял и Core i7 справился с этой задачей в 4 раза быстрее, чем Phenom X4. С повышением сложности монтажа и эффектов это время может значительно возрастать. То с чем Phenom X4 будет пыхтеть 2 часа, Core i7 осилит за 30 минут.

Если вы планируете серьезно заниматься монтажом видео, то мощный многопоточный процессор и большой объем памяти существенно сэкономят вам время.

6. Заключение

Аппетиты современных игр и профессиональных приложений очень быстро растут, требуя постоянных вложений в модернизацию компьютера. Но если у вас слабый процессор, то нет смысла менять видеокарту, он просто ее не раскроет, т.е. производительность упрется в процессор.

Современная платформа на основе мощного процессора с достаточным объемом оперативной памяти обеспечит высокую производительность вашего ПК на годы вперед. При этом снижаются затраты на апгрейд компьютера и отпадает необходимость полностью менять ПК через несколько лет.

7. Ссылки

Процессор Intel Core i7-8700
Процессор Intel Core i5-8400
Процессор Intel Core i3 8100

Похожие статьи

  • Что такое мессенджер в компьютере

    Мессенджеры – бум последних лет. Они появляются в магазинах приложений пачками – один круче другого, и каждый выбирает для себя тот, который больше по вкусу. Навигация Программы для передачи сообщений и другого контента между...

  • Лучшие фоторедакторы для андроид

    Вам может не понравиться яркость фото на вашем смартфоне Asus Zenfone или любом другом смартфоне на андроид, контрастность, ориентация или, возможно, вы захотите добавить что-то, чтобы фотографии выглядели броскими. Вот когда к вам...

  • Обзор самых лучших программ!

    Возможно, одну из наиболее сложных проблем в Excel представляет почти ошеломляющее количество форматов файлов, с которыми он может работать. С появлением Excel 2007 все стало еще более запутанным, поскольку в этой версии появилось...

  • Как и чем открыть xml файл выписки егрн

    Не все, но очень многие пользователи современных компьютерных систем зачастую сталкиваются с непонятными XML. Что это за данные и зачем они нужны, знает еще меньше юзеров. Ну а какой программой открыть понимают вообще единицы. Хотя в этом...

  • Как настроить удаленный рабочий стол

    Remote Desktop Protocol - протокол удалённого рабочего стола) - проприетарный протокол прикладного уровня, использующийся для обеспечения удалённой работы пользователя с сервером, на котором запущен сервис терминальных подключений ....

  • Как настроить селфи-палку на Андроид: инструкции, приложения, решение проблем

    Что такое монопод (селфи-палка) Если быть конкретным, то монопод представляет собой выдвигающееся длинное устройство, рукоятка которого выполнена по принципу телескопа - то есть удлиняется при необходимости и компактно задвигается обратно....